BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24110405)

  • 1. Saccadic Vector Optokinetic Perimetry (SVOP): a novel technique for automated static perimetry in children using eye tracking.
    Murray I; Perperidis A; Brash H; Cameron L; McTrusty A; Fleck B; Minns R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3186-9. PubMed ID: 24110405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of saccadic vector optokinetic perimetry: a method of automated static perimetry for children using eye tracking.
    Murray IC; Fleck BW; Brash HM; Macrae ME; Tan LL; Minns RA
    Ophthalmology; 2009 Oct; 116(10):2017-26. PubMed ID: 19560207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and characterisation of visual field defects using Saccadic Vector Optokinetic Perimetry in children with brain tumours.
    Murray IC; Schmoll C; Perperidis A; Brash HM; McTrusty AD; Cameron LA; Wilkinson AG; Mulvihill AO; Fleck BW; Minns RA
    Eye (Lond); 2018 Oct; 32(10):1563-1573. PubMed ID: 29880917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical applicability of the Saccadic Vector Optokinetic Perimeter in children with and without visual impairment.
    Simkin SK; Misra SL; Kasture A; McGhee CN; Dai S
    Clin Exp Optom; 2019 Jan; 102(1):70-78. PubMed ID: 29938834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccadic vector optokinetic perimetry in children with neurodisability or isolated visual pathway lesions: observational cohort study.
    Tailor V; Glaze S; Unwin H; Bowman R; Thompson G; Dahlmann-Noor A
    Br J Ophthalmol; 2016 Oct; 100(10):1427-32. PubMed ID: 26740608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correcting LCD luminance non-uniformity for threshold Saccadic Vector Optokinetic Perimetry (SVOP).
    Perperidis A; Murray I; Brash H; McTrusty A; Cameron L; Fleck B; Minns R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1636-9. PubMed ID: 24110017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Assessment of Visual Fields in Infants Using Saccadic Vector Optokinetic Perimetry (SVOP): A Feasibility Study.
    Perperidis A; McTrusty AD; Cameron LA; Murray IC; Brash HM; Fleck BW; Minns RA; Tatham AJ
    Transl Vis Sci Technol; 2021 Mar; 10(3):14. PubMed ID: 34003948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-Function Correlation in Hemianopic Vision Loss in Children Aged 3-6 Years Using OCT and SVOP, and Comparison with Adult Eyes.
    Bowl W; Knobloch R; Schweinfurth S; Holve K; Stieger K; Lorenz B
    Ophthalmic Res; 2018; 60(4):221-230. PubMed ID: 29332093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Threshold Saccadic Vector Optokinetic Perimetry (SVOP) and Standard Automated Perimetry (SAP) in Glaucoma. Part II: Patterns of Visual Field Loss and Acceptability.
    McTrusty AD; Cameron LA; Perperidis A; Brash HM; Tatham AJ; Agarwal PK; Murray IC; Fleck BW; Minns RA
    Transl Vis Sci Technol; 2017 Sep; 6(5):4. PubMed ID: 28900577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an Age-corrected Normative Database for Saccadic Vector Optokinetic Perimetry (SVOP).
    Tatham AJ; McClean P; Murray IC; McTrusty AD; Cameron LA; Perperidis A; Brash HM; Fleck BW; Minns RA
    J Glaucoma; 2020 Dec; 29(12):1106-1114. PubMed ID: 33264163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Saccadic Vector Optokinetic Perimetry and Standard Automated Perimetry in Glaucoma. Part I: Threshold Values and Repeatability.
    Murray IC; Perperidis A; Cameron LA; McTrusty AD; Brash HM; Tatham AJ; Agarwal PK; Fleck BW; Minns RA
    Transl Vis Sci Technol; 2017 Sep; 6(5):3. PubMed ID: 28900576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A case control study examining the feasibility of using eye tracking perimetry to differentiate patients with glaucoma from healthy controls.
    Tatham AJ; Murray IC; McTrusty AD; Cameron LA; Perperidis A; Brash HM; Fleck BW; Minns RA
    Sci Rep; 2021 Jan; 11(1):839. PubMed ID: 33436922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility, Accuracy, and Repeatability of Suprathreshold Saccadic Vector Optokinetic Perimetry.
    Murray IC; Cameron LA; McTrusty AD; Perperidis A; Brash HM; Fleck BW; Minns RA
    Transl Vis Sci Technol; 2016 Aug; 5(4):15. PubMed ID: 27617181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma.
    Patel DE; Cumberland PM; Walters BC; Russell-Eggitt I; Brookes J; Papadopoulos M; Khaw PT; Viswanathan AC; Garway-Heath D; Cortina-Borja M; Rahi JS;
    JAMA Ophthalmol; 2018 Feb; 136(2):155-161. PubMed ID: 29285534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speed and accuracy of saccades in patients with glaucoma evaluated using an eye tracking perimeter.
    Tatham AJ; Murray IC; McTrusty AD; Cameron LA; Perperidis A; Brash HM; Fleck BW; Minns RA
    BMC Ophthalmol; 2020 Jun; 20(1):259. PubMed ID: 32605609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eye Movement Perimetry and Frequency Doubling Perimetry: clinical performance and patient preference during glaucoma screening.
    Meethal NSK; Pel JJM; Mazumdar D; Asokan R; Panday M; van der Steen J; George R
    Graefes Arch Clin Exp Ophthalmol; 2019 Jun; 257(6):1277-1287. PubMed ID: 30944987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Open-source Static Threshold Perimetry Test Using Remote Eye-tracking (Eyecatcher): Description, Validation, and Preliminary Normative Data.
    Jones PR
    Transl Vis Sci Technol; 2020 Jul; 9(8):18. PubMed ID: 32855865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can Swedish interactive thresholding algorithm fast perimetry be used as an alternative to goldmann perimetry in neuro-ophthalmic practice?
    Szatmáry G; Biousse V; Newman NJ
    Arch Ophthalmol; 2002 Sep; 120(9):1162-73. PubMed ID: 12215089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perimetric evaluation of saccadic latency, saccadic accuracy, and visual threshold for peripheral visual stimuli in young compared with older adults.
    Warren DE; Thurtell MJ; Carroll JN; Wall M
    Invest Ophthalmol Vis Sci; 2013 Aug; 54(8):5778-87. PubMed ID: 23882693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of functional visual field loss by automated static perimetry.
    Frisén L
    Acta Ophthalmol; 2014 Dec; 92(8):805-9. PubMed ID: 24698019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.