These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 24110410)

  • 21. Our solution for fusion of simultaneusly acquired whole body scintigrams and optical images, as usesful tool in clinical practice in patients with differentiated thyroid carcinomas after radioiodine therapy. A useful tool in clinical practice.
    Matovic M; Jankovic M; Barjaktarovic M; Jeremic M
    Hell J Nucl Med; 2017; 20 Suppl():159. PubMed ID: 29324929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Measuring human arm motion parameters based on high-speed camera].
    Zhao D; Zhang W; Sun Z; Chen Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):76-9. PubMed ID: 11951529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic visual to tactile translation--Part I: Human factors, access methods, and image manipulation.
    Way TP; Barner KE
    IEEE Trans Rehabil Eng; 1997 Mar; 5(1):81-94. PubMed ID: 9086389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Extreme Learning Machine-Based Neuromorphic Tactile Sensing System for Texture Recognition.
    Rasouli M; Chen Y; Basu A; Kukreja SL; Thakor NV
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):313-325. PubMed ID: 29570059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. When vision influences the invisible distractor: tactile response compatibility effects require vision.
    Wesslein AK; Spence C; Frings C
    J Exp Psychol Hum Percept Perform; 2014 Apr; 40(2):763-74. PubMed ID: 24245501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast vision through frameless event-based sensing and convolutional processing: application to texture recognition.
    Perez-Carrasco JA; Acha B; Serrano C; Camunas-Mesa L; Serrano-Gotarredona T; Linares-Barranco B
    IEEE Trans Neural Netw; 2010 Apr; 21(4):609-20. PubMed ID: 20181543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visuo-tactile interactions are dependent on the predictive value of the visual stimulus.
    Kandula M; Hofman D; Dijkerman HC
    Neuropsychologia; 2015 Apr; 70():358-66. PubMed ID: 25498404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A man-machine vision interface for sensing the environment.
    Adjouadi M
    J Rehabil Res Dev; 1992; 29(2):57-76. PubMed ID: 1578393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptation to visual feedback delays on touchscreens with hand vision.
    Cattan E; Perrier P; Bérard F; Gerber S; Rochet-Capellan A
    Exp Brain Res; 2018 Dec; 236(12):3191-3201. PubMed ID: 30191261
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vision influences tactile perception without proprioceptive orienting.
    Tipper SP; Lloyd D; Shorland B; Dancer C; Howard LA; McGlone F
    Neuroreport; 1998 Jun; 9(8):1741-4. PubMed ID: 9665593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial coordinate systems for tactile spatial attention depend on developmental vision: evidence from event-related potentials in sighted and congenitally blind adult humans.
    Röder B; Föcker J; Hötting K; Spence C
    Eur J Neurosci; 2008 Aug; 28(3):475-83. PubMed ID: 18702719
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An event-related brain potential study of cross-modal links in spatial attention between vision and touch.
    Eimer M; Driver J
    Psychophysiology; 2000 Sep; 37(5):697-705. PubMed ID: 11037046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Spiking Neural Network Model of Depth from Defocus for Event-based Neuromorphic Vision.
    Haessig G; Berthelon X; Ieng SH; Benosman R
    Sci Rep; 2019 Mar; 9(1):3744. PubMed ID: 30842458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vision influences tactile perception at body sites that cannot be viewed directly.
    Tipper SP; Phillips N; Dancer C; Lloyd D; Howard LA; McGlone F
    Exp Brain Res; 2001 Jul; 139(2):160-7. PubMed ID: 11497057
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic programming and graph algorithms in computer vision.
    Felzenszwalb PF; Zabih R
    IEEE Trans Pattern Anal Mach Intell; 2011 Apr; 33(4):721-40. PubMed ID: 20660950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimating the Orientation of Objects from Tactile Sensing Data Using Machine Learning Methods and Visual Frames of Reference.
    Prado da Fonseca V; Alves de Oliveira TE; Petriu EM
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31108951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Digital image processing for visual prosthesis: filtering implications.
    Barriga-Rivera A; Suaning GJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4860-3. PubMed ID: 22255427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pixying Behavior: A Versatile Real-Time and
    Nashaat MA; Oraby H; Peña LB; Dominiak S; Larkum ME; Sachdev RN
    eNeuro; 2017; 4(1):. PubMed ID: 28275712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Tactile Virtual Reality for the Study of Active Somatosensation.
    Bhattacharjee A; Kajal DS; Patrono A; Li Hegner Y; Zampini M; Schwarz C; Braun C
    Front Integr Neurosci; 2020; 14():5. PubMed ID: 32132905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. UMATracker: an intuitive image-based tracking platform.
    Yamanaka O; Takeuchi R
    J Exp Biol; 2018 Aug; 221(Pt 16):. PubMed ID: 29954834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.