These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24110492)

  • 1. Electrical characteristics of 2D and 3D microelectrodes for high-resolution retinal prostheses.
    Lee S; Ahn J; Yoo H; Jung S; Oh S; Park S; Cho D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3535-8. PubMed ID: 24110492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses.
    Lee S; Ahn JH; Seo JM; Chung H; Cho DI
    Sensors (Basel); 2015 Jun; 15(6):14345-55. PubMed ID: 26091397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implantable nanostructured MEA with biphasic current stimulator for retinal prostheses.
    Han S; Kim C; Kim K; Lee S
    Technol Health Care; 2023; 31(5):1981-1995. PubMed ID: 36872814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3D flexible microelectrode array for subretinal stimulation.
    Seo HW; Kim N; Ahn J; Cha S; Goo YS; Kim S
    J Neural Eng; 2019 Aug; 16(5):056016. PubMed ID: 31357188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Honeycomb-Patterned Graphene Microelectrodes: A Promising Approach for Safe and Effective Retinal Stimulation Based on Electro-Thermo-Mechanical Modeling and Simulation.
    Asghar SA; Mahadevappa M
    IEEE Trans Nanobioscience; 2024 Apr; 23(2):262-271. PubMed ID: 37747869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 8-Channel Biphasic Current Stimulator Optimized for Retinal Prostheses.
    Lee CE; Jung Y; Song YK
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4298-4302. PubMed ID: 33714317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible microelectrode array for retinal prosthesis.
    Bin Sun ; Tengyue Li ; Kai Xia ; Qi Zeng ; Tianzhun Wu ; Humayun MS
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1097-1100. PubMed ID: 29060066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of epiretinal prostheses - evaluation of geometrical factors affecting stimulation thresholds.
    Kasi H; Hasenkamp W; Cosendai G; Bertsch A; Renaud P
    J Neuroeng Rehabil; 2011 Aug; 8():44. PubMed ID: 21854602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects on Retinal Stimulation of the Geometry and the Insertion Location of Penetrating Electrodes.
    Son Y; Chen ZC; Roh H; Lee BC; Im M
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3803-3812. PubMed ID: 37729573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancements in fabrication process of microelectrode array for a retinal prosthesis using Liquid Crystal Polymer (LCP).
    Jeong J; Shin S; Lee GJ; Gwon TM; Park JH; Kim SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5295-8. PubMed ID: 24110931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Three-Dimensional Microelectrode Array to Generate Virtual Electrodes for Epiretinal Prosthesis Based on a Modeling Study.
    Lyu Q; Lu Z; Li H; Qiu S; Guo J; Sui X; Sun P; Li L; Chai X; Lovell NH
    Int J Neural Syst; 2020 Mar; 30(3):2050006. PubMed ID: 32116093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical Stimulation of the Retina to Produce Artificial Vision.
    Weiland JD; Walston ST; Humayun MS
    Annu Rev Vis Sci; 2016 Oct; 2():273-294. PubMed ID: 28532361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities.
    Samba R; Herrmann T; Zeck G
    J Neural Eng; 2015 Feb; 12(1):016014. PubMed ID: 25588201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing.
    Prasad A; Sanchez JC
    J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal Prostheses and Artificial Vision.
    Özmert E; Arslan U
    Turk J Ophthalmol; 2019 Sep; 49(4):213-219. PubMed ID: 31486609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conducting polymer electrodes for visual prostheses.
    Green RA; Devillaine F; Dodds C; Matteucci P; Chen S; Byrnes-Preston P; Poole-Warren LA; Lovell NH; Suaning GJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6769-72. PubMed ID: 21095836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term in vivo impedance changes of subretinal microelectrodes implanted in dystrophic P23H rats.
    Linderholm P; Guyomard JL; Djilas M; Salzmann J; Simonutti M; Sahel JA; Safran AB; Renaud P; Picaud S
    Int J Artif Organs; 2013 Oct; 36(9):612-9. PubMed ID: 23918262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing.
    Hébert C; Warnking J; Depaulis A; Garçon LA; Mermoux M; Eon D; Mailley P; Omnès F
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():25-31. PubMed ID: 25491956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The research on high-density flexible microelectrode array of retinal prosthesis based on MEMS technology].
    Feng G; Sui X; Wang Y; Li G; Chai X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Nov; 37(6):407-10. PubMed ID: 24617208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Advanced research in the retinal prosthesis].
    Zou YY; Wang JT; Li XR
    Zhonghua Yan Ke Za Zhi; 2009 Nov; 45(11):1052-4. PubMed ID: 20137426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.