BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24110497)

  • 41. [Auditory localization and speech perception in noise. Preliminary study concerning 5 cases of perceptual deafness].
    Canévet G; Santon F; Scharf B
    Ann Otolaryngol Chir Cervicofac; 1986; 103(1):1-8. PubMed ID: 3706968
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearing.
    Davies-Venn E; Nelson P; Souza P
    J Acoust Soc Am; 2015 Jul; 138(1):492-503. PubMed ID: 26233047
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrophysiological and speech perception measures of auditory processing in experienced adult cochlear implant users.
    Kelly AS; Purdy SC; Thorne PR
    Clin Neurophysiol; 2005 Jun; 116(6):1235-46. PubMed ID: 15978485
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Relationship Between Environmental Sound Awareness and Speech Recognition Skills in Experienced Cochlear Implant Users.
    Harris MS; Boyce L; Pisoni DB; Shafiro V; Moberly AC
    Otol Neurotol; 2017 Oct; 38(9):e308-e314. PubMed ID: 28731964
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Validation of a clinical assessment of spectral-ripple resolution for cochlear implant users.
    Drennan WR; Anderson ES; Won JH; Rubinstein JT
    Ear Hear; 2014; 35(3):e92-8. PubMed ID: 24552679
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neural Correlates of Phonetic Learning in Postlingually Deafened Cochlear Implant Listeners.
    Miller S; Zhang Y; Nelson P
    Ear Hear; 2016; 37(5):514-28. PubMed ID: 26928002
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Relationship between behavioral and physiological spectral-ripple discrimination.
    Won JH; Clinard CG; Kwon S; Dasika VK; Nie K; Drennan WR; Tremblay KL; Rubinstein JT
    J Assoc Res Otolaryngol; 2011 Jun; 12(3):375-93. PubMed ID: 21271274
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cochlear implant users' spectral ripple resolution.
    Jeon EK; Turner CW; Karsten SA; Henry BA; Gantz BJ
    J Acoust Soc Am; 2015 Oct; 138(4):2350-8. PubMed ID: 26520316
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Event-related potentials for better speech perception in noise by cochlear implant users.
    Soshi T; Hisanaga S; Kodama N; Kanekama Y; Samejima Y; Yumoto E; Sekiyama K
    Hear Res; 2014 Oct; 316():110-21. PubMed ID: 25158303
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Programming peculiarities in two cochlear implant users with superficial siderosis of the central nervous system.
    Bittencourt AG; Goffi-Gomez MV; Pinna MH; Bento RF; de Brito R; Tsuji RK
    Eur Arch Otorhinolaryngol; 2012 May; 269(5):1555-63. PubMed ID: 22278194
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of the Spectral-Temporally Modulated Ripple Test With the Arizona Biomedical Institute Sentence Test in Cochlear Implant Users.
    Lawler M; Yu J; Aronoff JM
    Ear Hear; 2017; 38(6):760-766. PubMed ID: 28957975
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cochlear implantation in children with cochlear nerve deficiency.
    Vincenti V; Ormitti F; Ventura E; Guida M; Piccinini A; Pasanisi E
    Int J Pediatr Otorhinolaryngol; 2014 Jun; 78(6):912-7. PubMed ID: 24690223
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acoustic Cue Weighting by Adults with Cochlear Implants: A Mismatch Negativity Study.
    Moberly AC; Bhat J; Shahin AJ
    Ear Hear; 2016; 37(4):465-72. PubMed ID: 26655914
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Word recognition for temporally and spectrally distorted materials: the effects of age and hearing loss.
    Smith SL; Pichora-Fuller MK; Wilson RH; Macdonald EN
    Ear Hear; 2012; 33(3):349-66. PubMed ID: 22343546
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improved interaural timing of acoustic nerve stimulation affects sound localization in single-sided deaf cochlear implant users.
    Seebacher J; Franke-Trieger A; Weichbold V; Zorowka P; Stephan K
    Hear Res; 2019 Jan; 371():19-27. PubMed ID: 30439571
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison between bilateral cochlear implants and Neurelec Digisonic(®) SP Binaural cochlear implant: speech perception, sound localization and patient self-assessment.
    Bonnard D; Lautissier S; Bosset-Audoit A; Coriat G; Beraha M; Maunoury A; Martel J; Darrouzet V; Bébéar JP; Dauman R
    Audiol Neurootol; 2013; 18(3):171-83. PubMed ID: 23548561
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparison of speech discrimination with cochlear implants and tactile aids.
    Carney AE; Osberger MJ; Carney E; Robbins AM; Renshaw J; Miyamoto RT
    J Acoust Soc Am; 1993 Oct; 94(4):2036-49. PubMed ID: 8227746
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Validation of the Egyptian Arabic Assessment of Auditory Skills development using children with Cochlear Implants.
    El-Dessouky HM; Aziz AA; Sheikhany AR; ElMeshmeshy LM
    Int J Pediatr Otorhinolaryngol; 2019 Jul; 122():52-59. PubMed ID: 30974335
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advantages of binaural hearing provided through bimodal stimulation via a cochlear implant and a conventional hearing aid: a 6-month comparative study.
    Morera C; Manrique M; Ramos A; Garcia-Ibanez L; Cavalle L; Huarte A; Castillo C; Estrada E
    Acta Otolaryngol; 2005 Jun; 125(6):596-606. PubMed ID: 16076708
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spectral peak resolution and speech recognition in quiet: normal hearing, hearing impaired, and cochlear implant listeners.
    Henry BA; Turner CW; Behrens A
    J Acoust Soc Am; 2005 Aug; 118(2):1111-21. PubMed ID: 16158665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.