These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24110503)

  • 41. An initial transient-state and reliable measures of corticospinal excitability in TMS studies.
    Schmidt S; Cichy RM; Kraft A; Brocke J; Irlbacher K; Brandt SA
    Clin Neurophysiol; 2009 May; 120(5):987-93. PubMed ID: 19359215
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Physical activity modulates corticospinal excitability of the lower limb in young and old adults.
    Hassanlouei H; Sundberg CW; Smith AE; Kuplic A; Hunter SK
    J Appl Physiol (1985); 2017 Aug; 123(2):364-374. PubMed ID: 28495848
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcranial magnetic stimulation after conditioning stimulation in two adrenomyeloneuropathy patients: delayed but facilitated motor-evoked potentials.
    Lai KL; Lin CY; Liao KK; Wu ZA; Chen JT
    Funct Neurol; 2006; 21(3):141-4. PubMed ID: 17049132
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Repeated cathodal transspinal pulse and direct current stimulation modulate cortical and corticospinal excitability differently in healthy humans.
    Murray LM; Knikou M
    Exp Brain Res; 2019 Jul; 237(7):1841-1852. PubMed ID: 31079235
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acute changes in motor cortical excitability during slow oscillatory and constant anodal transcranial direct current stimulation.
    Bergmann TO; Groppa S; Seeger M; Mölle M; Marshall L; Siebner HR
    J Neurophysiol; 2009 Oct; 102(4):2303-11. PubMed ID: 19692511
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transcranial magnetic stimulation modulation of corticospinal excitability by targeting cortical I-waves with biphasic paired-pulses.
    Kallioniemi E; Savolainen P; Järnefelt G; Koskenkorva P; Karhu J; Julkunen P
    Brain Stimul; 2018; 11(2):322-326. PubMed ID: 29089235
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Corticospinal excitability is enhanced while preparing for complex movements.
    Kennefick M; Burma JS; van Donkelaar P; McNeil CJ
    Exp Brain Res; 2019 Mar; 237(3):829-837. PubMed ID: 30610263
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking.
    Ung RV; Imbeault MA; Ethier C; Brizzi L; Capaday C
    J Neurophysiol; 2005 Aug; 94(2):1133-42. PubMed ID: 15829598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pulsed Facilitation of Corticospinal Excitability by the Sensorimotor μ-Alpha Rhythm.
    Bergmann TO; Lieb A; Zrenner C; Ziemann U
    J Neurosci; 2019 Dec; 39(50):10034-10043. PubMed ID: 31685655
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of motor cortex rTMS on corticospinal descending activity.
    Di Lazzaro V; Profice P; Pilato F; Dileone M; Oliviero A; Ziemann U
    Clin Neurophysiol; 2010 Apr; 121(4):464-73. PubMed ID: 20096628
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability.
    Abdelmoula A; Baudry S; Duchateau J
    Neuroscience; 2016 May; 322():94-103. PubMed ID: 26892298
    [TBL] [Abstract][Full Text] [Related]  

  • 52. EEG-triggered TMS reveals stronger brain state-dependent modulation of motor evoked potentials at weaker stimulation intensities.
    Schaworonkow N; Triesch J; Ziemann U; Zrenner C
    Brain Stimul; 2019; 12(1):110-118. PubMed ID: 30268710
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elbow angle modulates corticospinal excitability to the resting biceps brachii at both spinal and supraspinal levels.
    Dongés SC; Taylor JL; Nuzzo JL
    Exp Physiol; 2019 Apr; 104(4):546-555. PubMed ID: 30690803
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigating human motor control by transcranial magnetic stimulation.
    Petersen NT; Pyndt HS; Nielsen JB
    Exp Brain Res; 2003 Sep; 152(1):1-16. PubMed ID: 12879177
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Facilitation of corticospinal tract excitability by transcranial direct current stimulation combined with voluntary grip exercise.
    Kim GW; Ko MH
    Neurosci Lett; 2013 Aug; 548():181-4. PubMed ID: 23726882
    [TBL] [Abstract][Full Text] [Related]  

  • 56. New coil positioning method for interleaved transcranial magnetic stimulation (TMS)/functional MRI (fMRI) and its validation in a motor cortex study.
    Moisa M; Pohmann R; Ewald L; Thielscher A
    J Magn Reson Imaging; 2009 Jan; 29(1):189-97. PubMed ID: 19097080
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Whole-hand water flow stimulation increases motor cortical excitability: a study of transcranial magnetic stimulation and movement-related cortical potentials.
    Sato D; Yamashiro K; Onishi H; Yasuhiro B; Shimoyama Y; Maruyama A
    J Neurophysiol; 2015 Feb; 113(3):822-33. PubMed ID: 25376780
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men.
    Mileva KN; Bowtell JL; Kossev AR
    Exp Physiol; 2009 Jan; 94(1):103-16. PubMed ID: 18658234
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Accurate Coil Positioning is Important for Single and Paired Pulse TMS on the Subject Level.
    de Goede AA; Ter Braack EM; van Putten MJAM
    Brain Topogr; 2018 Nov; 31(6):917-930. PubMed ID: 29943242
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Motor-evoked potentials recorded from lumbar erector spinae muscles: a study of corticospinal excitability changes associated with spinal manipulation.
    Dishman JD; Greco DS; Burke JR
    J Manipulative Physiol Ther; 2008 May; 31(4):258-70. PubMed ID: 18486746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.