These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 24110520)
1. Half-Against-Half structure in classification of benthic macroinvertebrate images. Joutsijoki H Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3646-9. PubMed ID: 24110520 [TBL] [Abstract][Full Text] [Related]
2. Improved Support Vector Machine Enabled Radial Basis Function and Linear Variants for Remote Sensing Image Classification. Razaque A; Ben Haj Frej M; Almi'ani M; Alotaibi M; Alotaibi B Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34203466 [TBL] [Abstract][Full Text] [Related]
3. Motor Oil Classification Using Color Histograms and Pattern Recognition Techniques. Ahmadi S; Mani-Varnosfaderani A; Habibi B J AOAC Int; 2018 Nov; 101(6):1967-1976. PubMed ID: 29678223 [TBL] [Abstract][Full Text] [Related]
5. A support vector machine classifier reduces interscanner variation in the HRCT classification of regional disease pattern in diffuse lung disease: comparison to a Bayesian classifier. Chang Y; Lim J; Kim N; Seo JB; Lynch DA Med Phys; 2013 May; 40(5):051912. PubMed ID: 23635282 [TBL] [Abstract][Full Text] [Related]
6. Machine learning approach to an otoneurological classification problem. Joutsijoki H; Varpa K; Iltanen K; Juhola M Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1294-7. PubMed ID: 24109932 [TBL] [Abstract][Full Text] [Related]
7. Classification and retrieval on macroinvertebrate image databases. Kiranyaz S; Ince T; Pulkkinen J; Gabbouj M; Ärje J; Kärkkäinen S; Tirronen V; Juhola M; Turpeinen T; Meissner K Comput Biol Med; 2011 Jul; 41(7):463-72. PubMed ID: 21601841 [TBL] [Abstract][Full Text] [Related]
8. Direct Kernel Perceptron (DKP): ultra-fast kernel ELM-based classification with non-iterative closed-form weight calculation. Fernández-Delgado M; Cernadas E; Barro S; Ribeiro J; Neves J Neural Netw; 2014 Feb; 50():60-71. PubMed ID: 24287336 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees. Anam K; Al-Jumaily A Neural Netw; 2017 Jan; 85():51-68. PubMed ID: 27814466 [TBL] [Abstract][Full Text] [Related]
10. A novel hybrid linear/nonlinear classifier for two-class classification: theory, algorithm, and applications. Chen W; Metz CE; Giger ML; Drukker K IEEE Trans Med Imaging; 2010 Feb; 29(2):428-41. PubMed ID: 19822471 [TBL] [Abstract][Full Text] [Related]
11. Rapid classification of Chinese quince (Chaenomeles speciosa Nakai) fruit provenance by near-infrared spectroscopy and multivariate calibration. Shao W; Li Y; Diao S; Jiang J; Dong R Anal Bioanal Chem; 2017 Jan; 409(1):115-120. PubMed ID: 27796451 [TBL] [Abstract][Full Text] [Related]
12. A comparative study on image-based snake identification using machine learning. Rajabizadeh M; Rezghi M Sci Rep; 2021 Sep; 11(1):19142. PubMed ID: 34580318 [TBL] [Abstract][Full Text] [Related]
13. Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination. Sørensen L; Nielsen M; J Neurosci Methods; 2018 May; 302():66-74. PubMed ID: 29378218 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Different Classification Techniques for Two-Class Functional Near-Infrared Spectroscopy-Based Brain-Computer Interface. Naseer N; Qureshi NK; Noori FM; Hong KS Comput Intell Neurosci; 2016; 2016():5480760. PubMed ID: 27725827 [TBL] [Abstract][Full Text] [Related]
15. Multi-scaled morphological features for the characterization of mammographic masses using statistical classification schemes. Georgiou H; Mavroforakis M; Dimitropoulos N; Cavouras D; Theodoridis S Artif Intell Med; 2007 Sep; 41(1):39-55. PubMed ID: 17714924 [TBL] [Abstract][Full Text] [Related]
16. Effect of finite sample size on feature selection and classification: a simulation study. Way TW; Sahiner B; Hadjiiski LM; Chan HP Med Phys; 2010 Feb; 37(2):907-20. PubMed ID: 20229900 [TBL] [Abstract][Full Text] [Related]
17. Comparison of Classifiers for the Transfer Learning of Affective Auditory P300-Based BCIs. Onishi A; Nakagawa S Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6766-6769. PubMed ID: 31947394 [TBL] [Abstract][Full Text] [Related]
18. Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers. Mavroforakis ME; Georgiou HV; Dimitropoulos N; Cavouras D; Theodoridis S Artif Intell Med; 2006 Jun; 37(2):145-62. PubMed ID: 16716579 [TBL] [Abstract][Full Text] [Related]
19. Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm. Maniruzzaman M; Kumar N; Menhazul Abedin M; Shaykhul Islam M; Suri HS; El-Baz AS; Suri JS Comput Methods Programs Biomed; 2017 Dec; 152():23-34. PubMed ID: 29054258 [TBL] [Abstract][Full Text] [Related]
20. Identification of a feature selection based pattern recognition scheme for finger movement recognition from multichannel EMG signals. Purushothaman G; Vikas R Australas Phys Eng Sci Med; 2018 Jun; 41(2):549-559. PubMed ID: 29744809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]