These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24110664)

  • 41. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control.
    Adewuyi AA; Hargrove LJ; Kuiken TA
    IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):485-94. PubMed ID: 25955989
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Applying LDA-based pattern recognition to predict isometric shoulder and elbow torque generation in individuals with chronic stroke with moderate to severe motor impairment.
    Kopke JV; Hargrove LJ; Ellis MD
    J Neuroeng Rehabil; 2019 Mar; 16(1):35. PubMed ID: 30836971
    [TBL] [Abstract][Full Text] [Related]  

  • 43. IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis.
    Bennett DA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):419-427. PubMed ID: 28320673
    [TBL] [Abstract][Full Text] [Related]  

  • 44. EMG pattern recognition control of multifunctional prostheses by transradial amputees.
    Li G; Kuiken TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6914-7. PubMed ID: 19964455
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of multiple dynamic factors on the performance of myoelectric pattern recognition.
    Khushaba RN; Al-Timemy A; Kodagoda S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1679-82. PubMed ID: 26736599
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients.
    Tkach DC; Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):727-34. PubMed ID: 24760931
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mapping Individual Motor Unit Activity to Continuous Three-DoF Wrist Torques: Perspectives for Myoelectric Control.
    Chen C; Yu Y; Sheng X; Meng J; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1807-1815. PubMed ID: 37030732
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis.
    Markovic M; Varel M; Schweisfurth MA; Schilling AF; Dosen S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):498-507. PubMed ID: 31841418
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control.
    Crouch DL; Huang H
    J Biomech; 2016 Dec; 49(16):3901-3907. PubMed ID: 27814972
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of EEG measurement of upper limb movement in motor imagery training system.
    Suwannarat A; Pan-Ngum S; Israsena P
    Biomed Eng Online; 2018 Aug; 17(1):103. PubMed ID: 30071853
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A linear model for simultaneously and proportionally estimating wrist kinematics from emg during mirrored bilateral movements.
    Pan L; Sheng X; Zhang D; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4593-6. PubMed ID: 24110757
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Study on the surface EMG pattern classification with BP neural networks].
    Wang R; Huang C; Li B; Jin D; Zhang J
    Zhongguo Yi Liao Qi Xie Za Zhi; 1998 Mar; 22(2):63-6. PubMed ID: 12016830
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A comparison between force and position control strategies in myoelectric prostheses.
    Ameri A; Englehart KB; Parker PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1342-5. PubMed ID: 23366147
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dual Window Pattern Recognition Classifier for Improved Partial-Hand Prosthesis Control.
    Earley EJ; Hargrove LJ; Kuiken TA
    Front Neurosci; 2016; 10():58. PubMed ID: 26941599
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms.
    Ortiz-Catalan M; Håkansson B; Brånemark R
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):756-64. PubMed ID: 24710833
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A mechatronics platform to study prosthetic hand control using EMG signals.
    Geethanjali P
    Australas Phys Eng Sci Med; 2016 Sep; 39(3):765-71. PubMed ID: 27278475
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimal electrode configurations for finger movement classification using EMG.
    Andrews A; Morin E; McLean L
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2987-90. PubMed ID: 19963553
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Virtual regression-based myoelectric hand-wrist prosthesis control and electrode site selection using no force feedback.
    Li J; Zhu Z; Boyd WJ; Martinez-Luna C; Dai C; Wang H; Wang H; Huang X; Farrell TR; Clancy EA
    Biomed Signal Process Control; 2023 Apr; 82():. PubMed ID: 36875964
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simultaneous and proportional force estimation in multiple degrees of freedom from intramuscular EMG.
    Kamavuako EN; Englehart KB; Jensen W; Farina D
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):1804-7. PubMed ID: 22562724
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Selective classification for improved robustness of myoelectric control under nonideal conditions.
    Scheme EJ; Englehart KB; Hudgins BS
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1698-705. PubMed ID: 21317073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.