BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 24110684)

  • 1. A self produced mother wavelet feature extraction method for motor imagery brain-computer interface.
    Yeh WL; Huang YC; Chiou JH; Duann JR; Chiou JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4302-5. PubMed ID: 24110684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications.
    Chaudhary S; Taran S; Bajaj V; Siuly S
    Comput Methods Programs Biomed; 2020 Apr; 187():105325. PubMed ID: 31964514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The CSP-Based New Features Plus Non-Convex Log Sparse Feature Selection for Motor Imagery EEG Classification.
    Zhang S; Zhu Z; Zhang B; Feng B; Yu T; Li Z
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32842635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel method for classification of multi-class motor imagery tasks based on feature fusion.
    Hou Y; Chen T; Lun X; Wang F
    Neurosci Res; 2022 Mar; 176():40-48. PubMed ID: 34508756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor imagery based brain computer interface using transform domain features.
    Elbaz AM; Ahmed AT; Mohamed AM; Oransa MA; Sayed KS; Eldeib AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6421-6424. PubMed ID: 28269716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic-based feature selection for efficient motion imaging of a brain-computer interface framework.
    Chang H; Yang J
    J Neural Eng; 2018 Oct; 15(5):056020. PubMed ID: 30101753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the Accuracy and Training Speed of Motor Imagery Brain-Computer Interfaces Using Wavelet-Based Combined Feature Vectors and Gaussian Mixture Model-Supervectors.
    Lee D; Park SH; Lee SG
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 28991172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single-joint multi-task motor imagery EEG signal recognition method based on Empirical Wavelet and Multi-Kernel Extreme Learning Machine.
    Guan S; Cong L; Wang F; Dong T
    J Neurosci Methods; 2024 Jul; 407():110136. PubMed ID: 38642806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Task Classifcation of Right-hand and Foot Motion Imagery Based on Wavelet Packet Transform].
    Cai M; Hu P
    Zhongguo Yi Liao Qi Xie Za Zhi; 2017 May; 41(3):177-180. PubMed ID: 29862762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature Selection Using Extreme Gradient Boosting Bayesian Optimization to upgrade the Classification Performance of Motor Imagery signals for BCI.
    Thenmozhi T; Helen R
    J Neurosci Methods; 2022 Jan; 366():109425. PubMed ID: 34838951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of BCI Multiclass Motor Imagery Task Based on Artificial Neural Network.
    Echtioui A; Zouch W; Ghorbel M; Mhiri C; Hamam H
    Clin EEG Neurosci; 2024 Jul; 55(4):455-464. PubMed ID: 36604821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis.
    Fu R; Han M; Tian Y; Shi P
    J Neurosci Methods; 2020 Sep; 343():108833. PubMed ID: 32619588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembling A Multi-Feature EEG Classifier for Left-Right Motor Imagery Data Using Wavelet-Based Fuzzy Approximate Entropy for Improved Accuracy.
    Hsu WY
    Int J Neural Syst; 2015 Dec; 25(8):1550037. PubMed ID: 26584583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.
    Siuly ; Li Y; Paul Wen P
    Comput Methods Programs Biomed; 2014 Mar; 113(3):767-80. PubMed ID: 24440135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG classification for motor imagery and resting state in BCI applications using multi-class Adaboost extreme learning machine.
    Gao L; Cheng W; Zhang J; Wang J
    Rev Sci Instrum; 2016 Aug; 87(8):085110. PubMed ID: 27587163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG feature fusion for motor imagery: A new robust framework towards stroke patients rehabilitation.
    Al-Qazzaz NK; Alyasseri ZAA; Abdulkareem KH; Ali NS; Al-Mhiqani MN; Guger C
    Comput Biol Med; 2021 Oct; 137():104799. PubMed ID: 34478922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces.
    Rodrigues PG; Filho CAS; Attux R; Castellano G; Soriano DC
    Med Biol Eng Comput; 2019 Aug; 57(8):1709-1725. PubMed ID: 31127535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Motor Imagery Electroencephalogram Feature Selection Algorithm Based on Mutual Information and Principal Component Analysis].
    Xu J; Zuo G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Apr; 33(2):201-7. PubMed ID: 29708316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fresh look at functional link neural network for motor imagery-based brain-computer interface.
    Hettiarachchi IT; Babaei T; Nguyen T; Lim CP; Nahavandi S
    J Neurosci Methods; 2018 Jul; 305():28-35. PubMed ID: 29733940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition.
    Miao M; Wang A; Liu F
    Med Biol Eng Comput; 2017 Sep; 55(9):1589-1603. PubMed ID: 28161876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.