These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24110750)

  • 1. Influence of the anisotropic mechanical properties of the skull in low-intensity focused ultrasound towards neuromodulation of the brain.
    Metwally MK; Han HS; Jeon HJ; Khang G; Kim TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4565-8. PubMed ID: 24110750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical and experimental evaluation of low-intensity transcranial focused ultrasound wave propagation using human skulls for brain neuromodulation.
    Chen M; Peng C; Wu H; Huang CC; Kim T; Traylor Z; Muller M; Chhatbar PY; Nam CS; Feng W; Jiang X
    Med Phys; 2023 Jan; 50(1):38-49. PubMed ID: 36342303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model.
    Suh HS; Lee WH; Kim TS
    Phys Med Biol; 2012 Nov; 57(21):6961-80. PubMed ID: 23044667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational exploration of wave propagation and heating from transcranial focused ultrasound for neuromodulation.
    Mueller JK; Ai L; Bansal P; Legon W
    J Neural Eng; 2016 Oct; 13(5):056002. PubMed ID: 27464603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational modeling of a single-element transcranial focused ultrasound transducer for subthalamic nucleus stimulation.
    Samoudi MA; Van Renterghem T; Botteldooren D
    J Neural Eng; 2019 Apr; 16(2):026015. PubMed ID: 30572313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive Focused Ultrasound for Neuromodulation: A Review.
    Bowary P; Greenberg BD
    Psychiatr Clin North Am; 2018 Sep; 41(3):505-514. PubMed ID: 30098661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of near-skull brain tissue with a focused device using shear-mode conversion: a numerical study.
    Pichardo S; Hynynen K
    Phys Med Biol; 2007 Dec; 52(24):7313-32. PubMed ID: 18065841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct phase projection and transcranial focusing of ultrasound for brain therapy.
    Pinton GF; Aubry JF; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1149-59. PubMed ID: 22711410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of nonlinear ultrasound propagation on high intensity brain therapy.
    Pinton G; Aubry JF; Fink M; Tanter M
    Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A numerical study of transcranial focused ultrasound beam propagation at low frequency.
    Yin X; Hynynen K
    Phys Med Biol; 2005 Apr; 50(8):1821-36. PubMed ID: 15815098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focused Ultrasound for Neuromodulation.
    Darrow DP
    Neurotherapeutics; 2019 Jan; 16(1):88-99. PubMed ID: 30488340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a subject-specific guide system for Low-Intensity Focused Ultrasound (LIFU) brain stimulation.
    Joe H; Pahk KJ; Park S; Kim H
    Comput Methods Programs Biomed; 2019 Jul; 176():105-110. PubMed ID: 31200898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A retrospective qualitative report of symptoms and safety from transcranial focused ultrasound for neuromodulation in humans.
    Legon W; Adams S; Bansal P; Patel PD; Hobbs L; Ai L; Mueller JK; Meekins G; Gillick BT
    Sci Rep; 2020 Mar; 10(1):5573. PubMed ID: 32221350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of tissue anisotropy on the radial and tangential components of the electric field in transcranial direct current stimulation.
    Metwally MK; Han SM; Kim TS
    Med Biol Eng Comput; 2015 Oct; 53(10):1085-101. PubMed ID: 25940845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation.
    Younan Y; Deffieux T; Larrat B; Fink M; Tanter M; Aubry JF
    Med Phys; 2013 Aug; 40(8):082902. PubMed ID: 23927357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound.
    Dallapiazza RF; Timbie KF; Holmberg S; Gatesman J; Lopes MB; Price RJ; Miller GW; Elias WJ
    J Neurosurg; 2018 Mar; 128(3):875-884. PubMed ID: 28430035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. S.M.A.R.T. F.U.S: Surrogate Model of Attenuation and Refraction in Transcranial Focused Ultrasound.
    Cain JA; Visagan S; Monti MM
    PLoS One; 2022; 17(10):e0264101. PubMed ID: 36302034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focusing of therapeutic ultrasound through a human skull: a numerical study.
    Sun J; Hynynen K
    J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1705-15. PubMed ID: 9745750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced ultrasound transmission through the human skull using shear mode conversion.
    Clement GT; White PJ; Hynynen K
    J Acoust Soc Am; 2004 Mar; 115(3):1356-64. PubMed ID: 15058357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans.
    Aubry JF; Tanter M; Pernot M; Thomas JL; Fink M
    J Acoust Soc Am; 2003 Jan; 113(1):84-93. PubMed ID: 12558249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.