BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24110756)

  • 1. Muscle force estimation with surface EMG during dynamic muscle contractions: a wavelet and ANN based approach.
    Bai F; Chew CM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4589-92. PubMed ID: 24110756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic muscle force predictions from EMG: an artificial neural network approach.
    Liu MM; Herzog W; Savelberg HH
    J Electromyogr Kinesiol; 1999 Dec; 9(6):391-400. PubMed ID: 10597052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis and classification of compressed EMG signals by wavelet transform via alternative neural networks algorithms.
    Ozsert M; Yavuz O; Durak-Ata L
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):521-5. PubMed ID: 20645198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mean frequency and signal amplitude of the surface EMG of the quadriceps muscles increase with increasing torque--a study using the continuous wavelet transform.
    Karlsson S; Gerdle B
    J Electromyogr Kinesiol; 2001 Apr; 11(2):131-40. PubMed ID: 11228426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions.
    Doorenbosch CA; Joosten A; Harlaar J
    J Electromyogr Kinesiol; 2005 Aug; 15(4):429-35. PubMed ID: 15811613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time and frequency domain responses of the mechanomyogram and electromyogram during isometric ramp contractions: a comparison of the short-time Fourier and continuous wavelet transforms.
    Ryan ED; Cramer JT; Egan AD; Hartman MJ; Herda TJ
    J Electromyogr Kinesiol; 2008 Feb; 18(1):54-67. PubMed ID: 17070700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced dynamic EMG-force estimation through calibration and PCI modeling.
    Hashemi J; Morin E; Mousavi P; Hashtrudi-Zaad K
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):41-50. PubMed ID: 24860036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combined muscle model and wavelet approach to interpreting the surface EMG signals from maximal dynamic knee extensions.
    Forrester SE; Pain MT
    J Appl Biomech; 2010 Feb; 26(1):62-72. PubMed ID: 20147759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An estimation of the influence of force decrease on the mean power spectral frequency shift of the EMG during repetitive maximum dynamic knee extensions.
    Karlsson JS; Ostlund N; Larsson B; Gerdle B
    J Electromyogr Kinesiol; 2003 Oct; 13(5):461-8. PubMed ID: 12932420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antagonist muscle coactivation during isokinetic knee extension.
    Aagaard P; Simonsen EB; Andersen JL; Magnusson SP; Bojsen-Møller F; Dyhre-Poulsen P
    Scand J Med Sci Sports; 2000 Apr; 10(2):58-67. PubMed ID: 10755275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of wavelet denoising in myoelectric control applications.
    Sharma T; Veer K
    J Med Eng Technol; 2016; 40(3):80-6. PubMed ID: 26887581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fourier and wavelet spectral analysis of EMG signals in supramaximal constant load dynamic exercise.
    Camata TV; Dantas JL; Abrao T; Brunetto MA; Moraes AC; Altimari LR
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1364-7. PubMed ID: 21096332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of interelectrode distance on electromyographic amplitude and mean power frequency during isokinetic and isometric muscle actions of the biceps brachii.
    Beck TW; Housh TJ; Johnson GO; Weir JP; Cramer JT; Coburn JW; Malek MH
    J Electromyogr Kinesiol; 2005 Oct; 15(5):482-95. PubMed ID: 15935960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier and wavelet spectral analysis of EMG signals in maximal constant load dynamic exercise.
    Costa MV; Pereira LA; Oliveira RS; Pedro RE; Camata TV; Abrao T; Brunetto MA; Altimari LR
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4622-5. PubMed ID: 21096232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Less is more: high pass filtering, to remove up to 99% of the surface EMG signal power, improves EMG-based biceps brachii muscle force estimates.
    Potvin JR; Brown SH
    J Electromyogr Kinesiol; 2004 Jun; 14(3):389-99. PubMed ID: 15094152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of surface electromyography recording time interval without muscle fatigue effect for biceps brachii muscle during maximum voluntary contraction.
    Soylu AR; Arpinar-Avsar P
    J Electromyogr Kinesiol; 2010 Aug; 20(4):773-6. PubMed ID: 20211568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dynamic EMG-torque model of elbow based on neural networks.
    Liang Peng ; Zeng-Guang Hou ; Weiqun Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2852-5. PubMed ID: 26736886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait.
    Bogey RA; Perry J; Gitter AJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):302-10. PubMed ID: 16200754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Fourier and wavelet transform procedures for examining the mechanomyographic and electromyographic frequency domain responses during fatiguing isokinetic muscle actions of the biceps brachii.
    Beck TW; Housh TJ; Johnson GO; Weir JP; Cramer JT; Coburn JW; Malek MH
    J Electromyogr Kinesiol; 2005 Apr; 15(2):190-9. PubMed ID: 15664148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of innervation zones in estimating biceps brachii force-EMG relationship during isometric contraction.
    Rantalainen T; Kłodowski A; Piitulainen H
    J Electromyogr Kinesiol; 2012 Feb; 22(1):80-7. PubMed ID: 22019132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.