These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24110757)

  • 21. In Vivo Estimation of Human Forearm and Wrist Dynamic Properties.
    Park K; Chang PH; Kang SH
    IEEE Trans Neural Syst Rehabil Eng; 2017 May; 25(5):436-446. PubMed ID: 27249835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses.
    Kapelner T; Vujaklija I; Jiang N; Negro F; Aszmann OC; Principe J; Farina D
    J Neuroeng Rehabil; 2019 Apr; 16(1):47. PubMed ID: 30953528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two degrees of freedom, dynamic, hand-wrist EMG-force using a minimum number of electrodes.
    Dai C; Zhu Z; Martinez-Luna C; Hunt TR; Farrell TR; Clancy EA
    J Electromyogr Kinesiol; 2019 Aug; 47():10-18. PubMed ID: 31009829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel method to replicate the kinematics of the carpus using a six degree-of-freedom robot.
    Fraysse F; Costi JJ; Stanley RM; Ding B; McGuire D; Eng K; Bain GI; Thewlis D
    J Biomech; 2014 Mar; 47(5):1091-8. PubMed ID: 24461354
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A parallel classification strategy to simultaneous control elbow, wrist, and hand movements.
    Leone F; Gentile C; Cordella F; Gruppioni E; Guglielmelli E; Zollo L
    J Neuroeng Rehabil; 2022 Jan; 19(1):10. PubMed ID: 35090512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In-vivo three-dimensional carpal bone kinematics during flexion-extension and radio-ulnar deviation of the wrist: Dynamic motion versus step-wise static wrist positions.
    Foumani M; Strackee SD; Jonges R; Blankevoort L; Zwinderman AH; Carelsen B; Streekstra GJ
    J Biomech; 2009 Dec; 42(16):2664-71. PubMed ID: 19748626
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EMG-Force and EMG-Target Models During Force-Varying Bilateral Hand-Wrist Contraction in Able-Bodied and Limb-Absent Subjects.
    Zhu Z; Martinez-Luna C; Li J; McDonald BE; Dai C; Huang X; Farrell TR; Clancy EA
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3040-3050. PubMed ID: 33196443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of surface and intramuscular EMG pattern recognition for simultaneous wrist/hand motion classification.
    Smith LH; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4223-6. PubMed ID: 24110664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous and proportional force estimation in multiple degrees of freedom from intramuscular EMG.
    Kamavuako EN; Englehart KB; Jensen W; Farina D
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):1804-7. PubMed ID: 22562724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of Wrist Position on the Metacarpophalangeal Joint Motion of the Index Through Small Finger.
    Latz D; Koukos C; Boeckers P; Jungbluth P; Schiffner E; Kaufmann R; Gehrmann SV
    Hand (N Y); 2019 Mar; 14(2):259-263. PubMed ID: 29072491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graph-Driven Simultaneous and Proportional Estimation of Wrist Angle and Grasp Force via High-Density EMG.
    Li D; Kang P; Yu Y; Shull PB
    IEEE J Biomed Health Inform; 2024 May; 28(5):2723-2732. PubMed ID: 38442056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A musculoskeletal model driven by muscle synergy-derived excitations for hand and wrist movements.
    Zhao J; Yu Y; Wang X; Ma S; Sheng X; Zhu X
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 34986472
    [No Abstract]   [Full Text] [Related]  

  • 33. EMG-based Estimation of Wrist Motion Using Polynomial Models.
    Ameri A
    Arch Bone Jt Surg; 2020 Nov; 8(6):722-728. PubMed ID: 33313354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validation of the Leap Motion Controller using markered motion capture technology.
    Smeragliuolo AH; Hill NJ; Disla L; Putrino D
    J Biomech; 2016 Jun; 49(9):1742-1750. PubMed ID: 27102160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wrist kinematic characterization of wheelchair propulsion in various seating positions: implication to wrist pain.
    Wei SH; Huang S; Jiang CJ; Chiu JC
    Clin Biomech (Bristol, Avon); 2003 Jul; 18(6):S46-52. PubMed ID: 12828914
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simple EMG-driven musculoskeletal model enables consistent control performance during path tracing tasks.
    Crouch D; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1-4. PubMed ID: 28268266
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carpal bone kinematics in combined wrist joint motions may differ from the bone kinematics during simple wrist motions.
    Upal MA
    Biomed Sci Instrum; 2003; 39():272-7. PubMed ID: 12724906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of distal arm joint angles from EMG and shoulder orientation for transhumeral prostheses.
    Akhtar A; Aghasadeghi N; Hargrove L; Bretl T
    J Electromyogr Kinesiol; 2017 Aug; 35():86-94. PubMed ID: 28624687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of a Simultaneous Myoelectric Control Strategy for a Multi-DoF Transradial Prosthesis.
    Piazza C; Rossi M; Catalano MG; Bicchi A; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2286-2295. PubMed ID: 32804650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An EMG-Driven Musculoskeletal Model for Estimating Continuous Wrist Motion.
    Zhao Y; Zhang Z; Li Z; Yang Z; Dehghani-Sanij AA; Xie S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3113-3120. PubMed ID: 33186119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.