These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24110808)

  • 1. Human pose recovery for rehabilitation using ambulatory sensors.
    Lin JF; Kulić D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4799-802. PubMed ID: 24110808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human pose recovery using wireless inertial measurement units.
    Lin JF; Kulić D
    Physiol Meas; 2012 Dec; 33(12):2099-115. PubMed ID: 23174667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foot Pose Estimation Using an Inertial Sensor Unit and Two Distance Sensors.
    Duong PD; Suh YS
    Sensors (Basel); 2015 Jul; 15(7):15888-902. PubMed ID: 26151205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of Novel Relative Orientation and Inertial Sensor-to-Segment Alignment Algorithms for Estimating 3D Hip Joint Angles.
    Adamowicz L; Gurchiek RD; Ferri J; Ursiny AT; Fiorentino N; McGinnis RS
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating Lower Limb Kinematics Using a Lie Group Constrained Extended Kalman Filter with a Reduced Wearable IMU Count and Distance Measurements.
    Sy LWF; Lovell NH; Redmond SJ
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online tracking of the lower body joint angles using IMUs for gait rehabilitation.
    Joukov V; Karg M; Kulic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2310-3. PubMed ID: 25570450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.
    Joukov V; Bonnet V; Karg M; Venture G; Kulic D
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):407-418. PubMed ID: 28141526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ambulatory measurement of 3D knee joint angle.
    Favre J; Jolles BM; Aissaoui R; Aminian K
    J Biomech; 2008; 41(5):1029-35. PubMed ID: 18222459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable Goniometer and Accelerometer Sensory Fusion for Knee Joint Angle Measurement in Daily Life.
    Tognetti A; Lorussi F; Carbonaro N; de Rossi D
    Sensors (Basel); 2015 Nov; 15(11):28435-55. PubMed ID: 26569249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rider trunk and bicycle pose estimation with fusion of force/inertial sensors.
    Zhang Y; Chen K; Yi J
    IEEE Trans Biomed Eng; 2013 Sep; 60(9):2541-51. PubMed ID: 23629841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Joint Angle Estimation with Inertial Sensors and Validation with A Robot Arm.
    El-Gohary M; McNames J
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1759-67. PubMed ID: 25700438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting kinematic constraints to compensate magnetic disturbances when calculating joint angles of approximate hinge joints from orientation estimates of inertial sensors.
    Laidig D; Schauer T; Seel T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():971-976. PubMed ID: 28813947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A basic study on variable-gain Kalman filter based on angle error calculated from acceleration signals for lower limb angle measurement with inertial sensors.
    Teruyama Y; Watanabe T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3423-6. PubMed ID: 24110464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Body-Worn IMU Human Skeletal Pose Estimation Using a Factor Graph-Based Optimization Framework.
    McGrath T; Stirling L
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33276492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation and Observability Analysis of Human Motion on Lie Groups.
    Joukov V; Cesic J; Westermann K; Markovic I; Petrovic I; Kulic D
    IEEE Trans Cybern; 2020 Mar; 50(3):1321-1332. PubMed ID: 31567105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The implementation of inertial sensors for the assessment of temporal parameters of gait in the knee arthroplasty population.
    De Vroey H; Staes F; Weygers I; Vereecke E; Vanrenterghem J; Deklerck J; Van Damme G; Hallez H; Claeys K
    Clin Biomech (Bristol); 2018 May; 54():22-27. PubMed ID: 29533844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Camera pose estimation to improve accuracy and reliability of joint angles assessed with attitude and heading reference systems.
    Lebel K; Hamel M; Duval C; Nguyen H; Boissy P
    Gait Posture; 2018 Jan; 59():199-205. PubMed ID: 29065321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UKF Magnetometer-Free Sensor Fusion for Pelvis Pose Estimation During Treadmill Walking.
    Cardarelli S; Mengarelli A; Tigrini A; Strazza A; Di Nardo F; Verdini F; Fioretti S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1213-1216. PubMed ID: 31946111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tests of wireless wearable sensor system in joint angle measurement of lower limbs.
    Watanabe T; Saito H
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5469-72. PubMed ID: 22255575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.