These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24110854)

  • 1. Emergence of motor synergy in vertical reaching task via tacit learning.
    Hayashibe M; Shimoda S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4985-8. PubMed ID: 24110854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning.
    Hayashibe M; Shimoda S
    Front Comput Neurosci; 2014; 8():21. PubMed ID: 24616695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unbiased Estimation of Human Joint Intrinsic Mechanical Properties During Movement.
    Guarin DL; Kearney RE
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):1975-1984. PubMed ID: 30235139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of inactivation of the anterior interpositus nucleus on the kinematic and dynamic control of multijoint movement.
    Cooper SE; Martin JH; Ghez C
    J Neurophysiol; 2000 Oct; 84(4):1988-2000. PubMed ID: 11024092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task oriented joint moment generation in virtual reality environment using a goniogram controlled dynamometer.
    Cikajlo I; Tomsic I; Klemen A
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4278-81. PubMed ID: 19163658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directional control of planar human arm movement.
    Gottlieb GL; Song Q; Almeida GL; Hong DA; Corcos D
    J Neurophysiol; 1997 Dec; 78(6):2985-98. PubMed ID: 9405518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics.
    Topka H; Konczak J; Schneider K; Boose A; Dichgans J
    Exp Brain Res; 1998 Apr; 119(4):493-503. PubMed ID: 9588784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of joint redundancy but not task space variability facilitates supervised motor learning.
    Singh P; Jana S; Ghosal A; Murthy A
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14414-14419. PubMed ID: 27911808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning and generation of goal-directed arm reaching from scratch.
    Kambara H; Kim K; Shin D; Sato M; Koike Y
    Neural Netw; 2009 May; 22(4):348-61. PubMed ID: 19121565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebellar ataxia: abnormal control of interaction torques across multiple joints.
    Bastian AJ; Martin TA; Keating JG; Thach WT
    J Neurophysiol; 1996 Jul; 76(1):492-509. PubMed ID: 8836239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breaking it down is better: haptic decomposition of complex movements aids in robot-assisted motor learning.
    Klein J; Spencer SJ; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):268-75. PubMed ID: 22531825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A robotic apparatus that dictates torque fields around joints without affecting inherent joint dynamics.
    Oytam Y; Lloyd D; Reid CS; de Rugy A; Carson RG
    Hum Mov Sci; 2010 Oct; 29(5):701-12. PubMed ID: 20728232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereotypic muscle-torque patterns are systematically adopted during acquisition of a multi-articular kicking task.
    Young RP; Marteniuk RG
    J Biomech; 1998 Sep; 31(9):809-16. PubMed ID: 9802781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying anti-gravity torques for the design of a powered exoskeleton.
    Ragonesi D; Agrawal SK; Sample W; Rahman T
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):283-8. PubMed ID: 23096118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning a throwing task is associated with differential changes in the use of motor abundance.
    Yang JF; Scholz JP
    Exp Brain Res; 2005 May; 163(2):137-58. PubMed ID: 15657698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The BioMotionBot: a robotic device for applications in human motor learning and rehabilitation.
    Bartenbach V; Sander C; Pöschl M; Wilging K; Nelius T; Doll F; Burger W; Stockinger C; Focke A; Stein T
    J Neurosci Methods; 2013 Mar; 213(2):282-97. PubMed ID: 23276545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of human limb movements: the leading joint hypothesis and its practical applications.
    Dounskaia N
    Exerc Sport Sci Rev; 2010 Oct; 38(4):201-8. PubMed ID: 20871237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multijoint upper limb torque estimation from sEMG measurements.
    Bueno DR; Montano L
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7233-6. PubMed ID: 24111414
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.