These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24110906)

  • 1. Bit error rate estimation for galvanic-type intra-body communication using experimental eye-diagram and jitter characteristics.
    Li JW; Chen XM; Pun SH; Mak PU; Gao YM; Vai MI; Du M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5195-8. PubMed ID: 24110906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Impulse Radio Intrabody Communication System for Wireless Body Area Networks.
    Cai Z; Seyedi M; Zhang W; Rivet F; Lai DTH
    J Med Biol Eng; 2017; 37(1):74-84. PubMed ID: 28286464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel sample based quadrature phase shift keying demodulator.
    Mohamed Moubark A; Ali SH
    ScientificWorldJournal; 2014; 2014():107831. PubMed ID: 25197687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of human limb gestures on galvanic coupling intra-body communication for advanced healthcare system.
    Chen XM; Pun SH; Zhao JF; Mak PU; Liang BD; Vai MI
    Biomed Eng Online; 2016 May; 15(1):60. PubMed ID: 27230849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of channel characteristics for galvanic-type intra-body communication based on a transfer function from a quasi-static field model.
    Chen XM; Mak PU; Pun SH; Gao YM; Lam CT; Vai MI; Du M
    Sensors (Basel); 2012 Nov; 12(12):16433-50. PubMed ID: 23443387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance Evaluation and Improvement of PER and Throughput in Galvanic-Coupling Intra-Body Communication Systems.
    Ito K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3742-3745. PubMed ID: 30441180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical exposure analysis of galvanic-coupled intra-body communication based on the empirical arm models.
    Gao YM; Zhang HF; Lin S; Jiang RX; Chen ZY; Lučev Vasić Ž; Vai MI; Du M; Cifrek M; Pun SH
    Biomed Eng Online; 2018 Jun; 17(1):71. PubMed ID: 29866126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Modeling and Simulation of the Galvanic Coupling Intra-Body Communication via Handshake Channel.
    Li M; Song Y; Li W; Wang G; Bu T; Zhao Y; Hao Q
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28420119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BPSK & QPSK modulated data communication for biomedical monitoring sensor network.
    Wegmueller MS; Fichtner W; Oberle M; Kuster N
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2071-4. PubMed ID: 17946088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite-element simulation of galvanic coupling intra-body communication based on the whole human body.
    Song Y; Zhang K; Hao Q; Hu L; Wang J; Shang F
    Sensors (Basel); 2012 Oct; 12(10):13567-82. PubMed ID: 23202010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asynchronous Chirp Slope Keying for Underwater Acoustic Communication.
    Schott DJ; Gabbrielli A; Xiong W; Fischer G; Höflinger F; Wendeberg J; Schindelhauer C; Rupitsch SJ
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34068628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eight-state trellis-coded optical modulation with signal constellations of four-dimensional M-ary quadrature-amplitude modulation.
    Ishimura S; Kikuchi K
    Opt Express; 2015 Mar; 23(5):6692-704. PubMed ID: 25836886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of carrier phase recovery for electronically dispersion compensated coherent systems.
    Farhoudi R; Ghazisaeidi A; Rusch LA
    Opt Express; 2012 Nov; 20(24):26568-82. PubMed ID: 23187512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiuser communication scheme based on binary phase-shift keying and chaos for telemedicine.
    Michel-Macarty JA; Murillo-Escobar MA; López-Gutiérrez RM; Cruz-Hernández C; Cardoza-Avendaño L
    Comput Methods Programs Biomed; 2018 Aug; 162():165-175. PubMed ID: 29903483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On BER performance of EBPSK-MODEM in AWGN channel.
    Wu L; Feng M
    Sensors (Basel); 2010; 10(4):3824-34. PubMed ID: 22319328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance evaluation of intensity modulated optical OFDM system with digital baseband distortion.
    Vanin E
    Opt Express; 2011 Feb; 19(5):4280-93. PubMed ID: 21369258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-loss high-speed silicon IQ modulator for QPSK/DQPSK in C and L bands.
    Goi K; Oka A; Kusaka H; Terada Y; Ogawa K; Liow TY; Tu X; Lo GQ; Kwong DL
    Opt Express; 2014 May; 22(9):10703-9. PubMed ID: 24921771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High phase noise tolerant pilot-tone-aided DP-QPSK optical communication systems.
    Zhang X; Pang X; Deng L; Zibar D; Monroy IT; Younce R
    Opt Express; 2012 Aug; 20(18):19990-5. PubMed ID: 23037051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A soft decoding algorithm and hardware implementation for the visual prosthesis based on high order soft demodulation.
    Yang Y; Quan N; Bu J; Li X; Yu N
    Biomed Eng Online; 2016 Sep; 15(1):110. PubMed ID: 27671349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrete Fourier Transform with Denoise Model Based Least Square Wiener Channel Estimator for Channel Estimation in MIMO-OFDM.
    S D; Palanisamy S; Hajjej F; Khalaf OI; Abdulsahib GM; S R
    Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36359691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.