These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24110919)

  • 21. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):590-603. PubMed ID: 15072213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An influence of spontaneous spike rates on information transmission in a spherical bushy neuron model with stochastic ion channels.
    Arata H; Mino H
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1370-3. PubMed ID: 23366154
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of neural stochastic firing in cochlear implant stimulation by the addition of noise: a computational study of the influence of stimulation settings and spontaneous activity.
    Paglialonga A; Fiocchi S; Ravazzani P; Tognola G
    Comput Biol Med; 2010 Jun; 40(6):597-606. PubMed ID: 20471638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A computational modelling framework for assessing information transmission with cochlear implants.
    Leclère T; Johannesen PT; Wijetillake A; Segovia-Martínez M; Lopez-Poveda EA
    Hear Res; 2023 May; 432():108744. PubMed ID: 37004271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The dependence of auditory nerve rate adaptation on electric stimulus parameters, electrode position, and fiber diameter: a computer model study.
    Woo J; Miller CA; Abbas PJ
    J Assoc Res Otolaryngol; 2010 Jun; 11(2):283-96. PubMed ID: 20033248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeled auditory nerve responses to amplitude modulated cochlear implant stimulation.
    van Gendt MJ; Briaire JJ; Kalkman RK; Frijns JHM
    Hear Res; 2017 Aug; 351():19-33. PubMed ID: 28625417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spontaneous activity of auditory nerve fibers in the barn owl (Tyto alba): analyses of interspike interval distributions.
    Neubauer H; Köppl C; Heil P
    J Neurophysiol; 2009 Jun; 101(6):3169-91. PubMed ID: 19357334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A point process framework for modeling electrical stimulation of the auditory nerve.
    Goldwyn JH; Rubinstein JT; Shea-Brown E
    J Neurophysiol; 2012 Sep; 108(5):1430-52. PubMed ID: 22673331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationship Between Peripheral and Psychophysical Measures of Amplitude Modulation Detection in Cochlear Implant Users.
    Tejani VD; Abbas PJ; Brown CJ
    Ear Hear; 2017; 38(5):e268-e284. PubMed ID: 28207576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biophysics-inspired spike rate adaptation for computationally efficient phenomenological nerve modeling.
    de Nobel J; Martens SSM; Briaire JJ; Bäck THW; Kononova AV; Frijns JHM
    Hear Res; 2024 Jun; 447():109011. PubMed ID: 38692015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phase Locking of Auditory-Nerve Fibers Reveals Stereotyped Distortions and an Exponential Transfer Function with a Level-Dependent Slope.
    Peterson AJ; Heil P
    J Neurosci; 2019 May; 39(21):4077-4099. PubMed ID: 30867259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations.
    Wu JS; Young ED; Glowatzki E
    J Neurosci; 2016 Oct; 36(41):10584-10597. PubMed ID: 27733610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biophysical model of an auditory nerve fiber with a novel adaptation component.
    Woo J; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2177-80. PubMed ID: 19497810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stochastic properties of cat auditory nerve responses to electric and acoustic stimuli and application to intensity discrimination.
    Javel E; Viemeister NF
    J Acoust Soc Am; 2000 Feb; 107(2):908-21. PubMed ID: 10687700
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A model of frequency discrimination with optimal processing of auditory nerve spike intervals.
    Hanekom JJ; Krüger JJ
    Hear Res; 2001 Jan; 151(1-2):188-204. PubMed ID: 11124465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers.
    Neubauer H; Heil P
    Brain Res; 2008 Jul; 1220():208-23. PubMed ID: 17936252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1040-9. PubMed ID: 15977734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation.
    Mino H; Rubinstein JT; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):13-20. PubMed ID: 14723489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved temporal coding of sinusoids in electric stimulation of the auditory nerve using desynchronizing pulse trains.
    Litvak LM; Delgutte B; Eddington DK
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2079-98. PubMed ID: 14587607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Auditory nerve responses to monophasic and biphasic electric stimuli.
    Miller CA; Robinson BK; Rubinstein JT; Abbas PJ; Runge-Samuelson CL
    Hear Res; 2001 Jan; 151(1-2):79-94. PubMed ID: 11124454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.