These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24110934)

  • 1. A biomimetic framework for coordinating and controlling whole body movements in humanoid robots.
    Morasso P; Rea F; Mohan V
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5307-10. PubMed ID: 24110934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Posture Control-Human-Inspired Approaches for Humanoid Robot Benchmarking: Conceptualizing Tests, Protocols and Analyses.
    Mergner T; Lippi V
    Front Neurorobot; 2018; 12():21. PubMed ID: 29867428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A control system for a flexible spine belly-dancing humanoid.
    Or J
    Artif Life; 2006; 12(1):63-87. PubMed ID: 16393451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracting motor synergies from random movements for low-dimensional task-space control of musculoskeletal robots.
    Fu KC; Dalla Libera F; Ishiguro H
    Bioinspir Biomim; 2015 Oct; 10(5):056016. PubMed ID: 26448530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-protective whole body motion for humanoid robots based on synergy of global reaction and local reflex.
    Shimizu T; Saegusa R; Ikemoto S; Ishiguro H; Metta G
    Neural Netw; 2012 Aug; 32():109-18. PubMed ID: 22377658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human-Inspired Eigenmovement Concept Provides Coupling-Free Sensorimotor Control in Humanoid Robot.
    Alexandrov AV; Lippi V; Mergner T; Frolov AA; Hettich G; Husek D
    Front Neurorobot; 2017; 11():22. PubMed ID: 28487646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-organized coordinated motion in groups of physically connected robots.
    Baldassarre G; Trianni V; Bonani M; Mondada F; Dorigo M; Nolfi S
    IEEE Trans Syst Man Cybern B Cybern; 2007 Feb; 37(1):224-39. PubMed ID: 17278574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An octopus-bioinspired solution to movement and manipulation for soft robots.
    Calisti M; Giorelli M; Levy G; Mazzolai B; Hochner B; Laschi C; Dario P
    Bioinspir Biomim; 2011 Sep; 6(3):036002. PubMed ID: 21670493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic robotics should be based on functional morphology.
    Witte H; Hoffmann H; Hackert R; Schilling C; Fischer MS; Preuschoft H
    J Anat; 2004 May; 204(5):331-42. PubMed ID: 15198698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An adaptive spinal-like controller: tunable biomimetic behavior for a robotic limb.
    Stefanovic F; Galiana HL
    Biomed Eng Online; 2014 Nov; 13():151. PubMed ID: 25409735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetics of human movement: functional or aesthetic?
    Harris CM
    Bioinspir Biomim; 2009 Sep; 4(3):033001. PubMed ID: 19567935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A developmental roadmap for learning by imitation in robots.
    Lopes M; Santos-Victor J
    IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):308-21. PubMed ID: 17416159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic coordination between robots: self-organized timing selection in a juggling-like ball-passing task.
    Hirai H; Miyazaki F
    IEEE Trans Syst Man Cybern B Cybern; 2006 Aug; 36(4):738-54. PubMed ID: 16903361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model of postural control in quiet standing: robust compensation of delay-induced instability using intermittent activation of feedback control.
    Asai Y; Tasaka Y; Nomura K; Nomura T; Casadio M; Morasso P
    PLoS One; 2009 Jul; 4(7):e6169. PubMed ID: 19584944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How mimetic should a robotic fish be to socially integrate into zebrafish groups?
    Cazenille L; Collignon B; Chemtob Y; Bonnet F; Gribovskiy A; Mondada F; Bredeche N; Halloy J
    Bioinspir Biomim; 2018 Jan; 13(2):025001. PubMed ID: 28952466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vestibular humanoid postural control.
    Mergner T; Schweigart G; Fennell L
    J Physiol Paris; 2009; 103(3-5):178-94. PubMed ID: 19665555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Robust Balance-Control Framework for the Terrain-Blind Bipedal Walking of a Humanoid Robot on Unknown and Uneven Terrain.
    Joe HM; Oh JH
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-inspired Model of Humanoid Robot for Ascending Movement.
    Vatankhah M; Kobravi H; Ritter A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5287-5290. PubMed ID: 31947050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse biomimetics: how robots can help to verify concepts concerning sensorimotor control of human arm and leg movements.
    Kalveram KT; Seyfarth A
    J Physiol Paris; 2009; 103(3-5):232-43. PubMed ID: 19665562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.