These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24110934)

  • 21. Intermittent control with ankle, hip, and mixed strategies during quiet standing: a theoretical proposal based on a double inverted pendulum model.
    Suzuki Y; Nomura T; Casadio M; Morasso P
    J Theor Biol; 2012 Oct; 310():55-79. PubMed ID: 22732276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human hip-ankle coordination emerging from multisensory feedback control.
    Hettich G; Assländer L; Gollhofer A; Mergner T
    Hum Mov Sci; 2014 Oct; 37():123-46. PubMed ID: 25150802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-entrainment to optimal gaits of an underactuated biomimetic swimming robot using adaptive frequency oscillators.
    Alessi A; Accoto D; Guglielmelli E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3627-30. PubMed ID: 26737078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomimetic Approaches for Human Arm Motion Generation: Literature Review and Future Directions.
    Trivedi U; Menychtas D; Alqasemi R; Dubey R
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112253
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new 3D center of mass control approach for FES-assisted standing: First experimental evaluation with a humanoid robot.
    Jovic J; Bonnet V; Fattal C; Fraisse P; Azevedo Coste C
    Med Eng Phys; 2016 Nov; 38(11):1270-1278. PubMed ID: 27692585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ankle and hip postural strategies defined by joint torques.
    Runge CF; Shupert CL; Horak FB; Zajac FE
    Gait Posture; 1999 Oct; 10(2):161-70. PubMed ID: 10502650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anticipatory visual perception as a bio-inspired mechanism underlying robot locomotion.
    Barrera A; Laschi C
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3206-9. PubMed ID: 21096813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Smooth transition for CPG-based body shape control of a snake-like robot.
    Nor NM; Ma S
    Bioinspir Biomim; 2014 Mar; 9(1):016003. PubMed ID: 24343201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biologically-inspired humanoid postural control.
    Tahboub KA
    J Physiol Paris; 2009; 103(3-5):195-210. PubMed ID: 19665559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A model of postural coordination dynamics.
    James EG
    Gait Posture; 2014 Jan; 39(1):194-7. PubMed ID: 23877034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using insects to drive mobile robots - hybrid robots bridge the gap between biological and artificial systems.
    Ando N; Kanzaki R
    Arthropod Struct Dev; 2017 Sep; 46(5):723-735. PubMed ID: 28254451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The control system for the Honda humanoid robot.
    Takenaka T
    Age Ageing; 2006 Sep; 35 Suppl 2():ii24-ii26. PubMed ID: 16926199
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic Determinants of the Uncontrolled Manifold during Human Quiet Stance.
    Suzuki Y; Morimoto H; Kiyono K; Morasso PG; Nomura T
    Front Hum Neurosci; 2016; 10():618. PubMed ID: 27999535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Paradoxical muscle movement during postural control.
    Loram ID; Maganaris CN; Lakie M
    Med Sci Sports Exerc; 2009 Jan; 41(1):198-204. PubMed ID: 19092688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non Linear Control System for Humanoid Robot to Perform Body Language Movements.
    Gomez-Quispe JM; Pérez-Zuñiga G; Arce D; Urbina F; Gibaja S; Paredes R; Cuellar F
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human-Derived Disturbance Estimation and Compensation (DEC) Method Lends Itself to a Modular Sensorimotor Control in a Humanoid Robot.
    Lippi V; Mergner T
    Front Neurorobot; 2017; 11():49. PubMed ID: 28951719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biologically inspired kinematic synergies enable linear balance control of a humanoid robot.
    Hauser H; Neumann G; Ijspeert AJ; Maass W
    Biol Cybern; 2011 May; 104(4-5):235-49. PubMed ID: 21523489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robust hopping based on virtual pendulum posture control.
    Sharbafi MA; Maufroy C; Ahmadabadi MN; Yazdanpanah MJ; Seyfarth A
    Bioinspir Biomim; 2013 Sep; 8(3):036002. PubMed ID: 23735558
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.