These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24110957)

  • 1. A new method of concurrently visualizing states, values, and actions in reinforcement based brain machine interfaces.
    Bae J; Sanchez Giraldo LG; Pohlmeyer EA; Sanchez JC; Principe JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5402-5. PubMed ID: 24110957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kernel Temporal Differences for EEG-based Reinforcement Learning Brain Machine Interfaces.
    Thapa BR; Tangarife DR; Bae J
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3327-3333. PubMed ID: 36086236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kernel temporal differences for neural decoding.
    Bae J; Sanchez Giraldo LG; Pohlmeyer EA; Francis JT; Sanchez JC; Príncipe JC
    Comput Intell Neurosci; 2015; 2015():481375. PubMed ID: 25866504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins NW; Sanchez JC
    PLoS One; 2014; 9(1):e87253. PubMed ID: 24498055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal tuning in a brain-machine interface during Reinforcement Learning.
    Mahmoudi B; Digiovanna J; Principe JC; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4491-4. PubMed ID: 19163713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustering Based Kernel Reinforcement Learning for Neural Adaptation in Brain-Machine Interfaces.
    Zhang X; Principe JC; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():6125-6128. PubMed ID: 30441732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins N; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4108-11. PubMed ID: 23366831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kernel Reinforcement Learning-Assisted Adaptive Decoder Facilitates Stable and Continuous Brain Control Tasks.
    Zhang X; Chen S; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4125-4134. PubMed ID: 37792657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural Control of a Tracking Task via Attention-Gated Reinforcement Learning for Brain-Machine Interfaces.
    Wang Y; Wang F; Xu K; Zhang Q; Zhang S; Zheng X
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):458-67. PubMed ID: 25073173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustering Neural Patterns in Kernel Reinforcement Learning Assists Fast Brain Control in Brain-Machine Interfaces.
    Zhang X; Libedinsky C; So R; Principe JC; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1684-1694. PubMed ID: 31403433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Kernel Reinforcement Learning Decoding Framework Integrating Neural and Feedback Signals for Brain Control.
    Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cluster Kernel Reinforcement Learning-based Kalman Filter for Three-Lever Discrimination Task in Brain-Machine Interface.
    Song Z; Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():690-693. PubMed ID: 36086404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covariant Cluster Transfer for Kernel Reinforcement Learning in Brain-Machine Interface.
    Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3086-3089. PubMed ID: 33018657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum correntropy based attention-gated reinforcement learning designed for brain machine interface.
    Hongbao Li ; Fang Wang ; Qiaosheng Zhang ; Shaomin Zhang ; Yiwen Wang ; Xiaoxiang Zheng ; Principe JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3056-3059. PubMed ID: 28268956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Weight Transfer Mechanism for Kernel Reinforcement Learning Decoding in Brain-Machine Interfaces.
    Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3547-3550. PubMed ID: 31946644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Task Learning Over Multi-Day Recording via Internally Rewarded Reinforcement Learning Based Brain Machine Interfaces.
    Shen X; Zhang X; Huang Y; Chen S; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3089-3099. PubMed ID: 33232240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kernel Temporal Difference based Reinforcement Learning for Brain Machine Interfaces
    Shen X; Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6721-6724. PubMed ID: 34892650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feedback for reinforcement learning based brain-machine interfaces using confidence metrics.
    Prins NW; Sanchez JC; Prasad A
    J Neural Eng; 2017 Jun; 14(3):036016. PubMed ID: 28240598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal calibration of the learning rate in closed-loop adaptive brain-machine interfaces.
    Hsieh HL; Shanechi MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1667-70. PubMed ID: 26736596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coadaptive brain-machine interface via reinforcement learning.
    DiGiovanna J; Mahmoudi B; Fortes J; Principe JC; Sanchez JC
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):54-64. PubMed ID: 19224719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.