These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24110980)

  • 1. Validation of a wrist monitor for accurate estimation of RR intervals during sleep.
    Renevey P; Sola J; Theurillat P; Bertschi M; Krauss J; Andries D; Sartori C
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5493-6. PubMed ID: 24110980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep estimation from wrist movement quantified by different actigraphic modalities.
    Jean-Louis G; Kripke DF; Mason WJ; Elliott JA; Youngstedt SD
    J Neurosci Methods; 2001 Feb; 105(2):185-91. PubMed ID: 11275275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and analysis of pulse waves during sleep via wrist-worn actigraphy.
    Zschocke J; Kluge M; Pelikan L; Graf A; Glos M; Müller A; Mikolajczyk R; Bartsch RP; Penzel T; Kantelhardt JW
    PLoS One; 2019; 14(12):e0226843. PubMed ID: 31891612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternatives to polysomnography (PSG): a validation of wrist actigraphy and a partial-PSG system.
    Kosmadopoulos A; Sargent C; Darwent D; Zhou X; Roach GD
    Behav Res Methods; 2014 Dec; 46(4):1032-41. PubMed ID: 24442593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoplethysmography as a single source for analysis of sleep-disordered breathing in patients with severe cardiovascular disease.
    Amir O; Barak-Shinar D; Henry A; Smart FW
    J Sleep Res; 2012 Feb; 21(1):94-100. PubMed ID: 21672069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heart Rate Detection During Sleep Using a Flexible RF Resonator and Injection-Locked PLL Sensor.
    Kim SW; Choi SB; An YJ; Kim BH; Kim DW; Yook JG
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2568-75. PubMed ID: 26057527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of Photoplethysmography-Based Sleep Staging Compared With Polysomnography in Healthy Middle-Aged Adults.
    Fonseca P; Weysen T; Goelema MS; Møst EIS; Radha M; Lunsingh Scheurleer C; van den Heuvel L; Aarts RM
    Sleep; 2017 Jul; 40(7):. PubMed ID: 28838130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of a novel non-contact biomotion sensor with wrist actigraphy in estimating sleep quality in patients with obstructive sleep apnoea.
    Pallin M; O'Hare E; Zaffaroni A; Boyle P; Fagan C; Kent B; Heneghan C; de Chazal P; McNicholas WT
    J Sleep Res; 2014 Aug; 23(4):475-84. PubMed ID: 24495222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of heart rate variability estimated with reflective wrist-PPG in elderly vascular patients.
    Hoog Antink C; Mai Y; Peltokangas M; Leonhardt S; Oksala N; Vehkaoja A
    Sci Rep; 2021 Apr; 11(1):8123. PubMed ID: 33854090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity of Wrist-Worn photoplethysmography devices to measure heart rate: A systematic review and meta-analysis.
    Zhang Y; Weaver RG; Armstrong B; Burkart S; Zhang S; Beets MW
    J Sports Sci; 2020 Sep; 38(17):2021-2034. PubMed ID: 32552580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of PurePulse photoplethysmography technology of Fitbit Charge 2 for assessment of heart rate during sleep.
    Haghayegh S; Khoshnevis S; Smolensky MH; Diller KR
    Chronobiol Int; 2019 Jul; 36(7):927-933. PubMed ID: 30990098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How accurately does wrist actigraphy identify the states of sleep and wakefulness?
    Pollak CP; Tryon WW; Nagaraja H; Dzwonczyk R
    Sleep; 2001 Dec; 24(8):957-65. PubMed ID: 11766166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heart Rate Variability Monitoring during Sleep Based on Capacitively Coupled Textile Electrodes on a Bed.
    Lee HJ; Hwang SH; Yoon HN; Lee WK; Park KS
    Sensors (Basel); 2015 May; 15(5):11295-311. PubMed ID: 26007716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating heart rate using wrist-type Photoplethysmography and acceleration sensor while running.
    Fukushima H; Kawanaka H; Bhuiyan MS; Oguri K
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2901-4. PubMed ID: 23366531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography.
    Selvaraj N; Jaryal A; Santhosh J; Deepak KK; Anand S
    J Med Eng Technol; 2008; 32(6):479-84. PubMed ID: 18663635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards using photo-plethysmogram amplitude to measure blood pressure during sleep.
    Chua EC; Redmond SJ; McDarby G; Heneghan C
    Ann Biomed Eng; 2010 Mar; 38(3):945-54. PubMed ID: 20049639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The validity of activity monitors for measuring sleep in elite athletes.
    Sargent C; Lastella M; Halson SL; Roach GD
    J Sci Med Sport; 2016 Oct; 19(10):848-53. PubMed ID: 26794719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a sleep switch device.
    Hauri PJ
    Sleep; 1999 Dec; 22(8):1110-7. PubMed ID: 10617172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Sleep Quality Assessment Using Wearable Sensors by Including Information From Postural/Sleep Position Changes and Body Acceleration: A Comparison of Chest-Worn Sensors, Wrist Actigraphy, and Polysomnography.
    Razjouyan J; Lee H; Parthasarathy S; Mohler J; Sharafkhaneh A; Najafi B
    J Clin Sleep Med; 2017 Nov; 13(11):1301-1310. PubMed ID: 28992827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sleep stage prediction with raw acceleration and photoplethysmography heart rate data derived from a consumer wearable device.
    Walch O; Huang Y; Forger D; Goldstein C
    Sleep; 2019 Dec; 42(12):. PubMed ID: 31579900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.