BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24110983)

  • 1. Wirelessly addressable heater array for centrifugal microfluidics and Escherichia coli sterilization.
    Chen X; Song L; Assadsangabi B; Fang J; Mohamed Ali MS; Takahata K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5505-8. PubMed ID: 24110983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel localized heating technique on centrifugal microfluidic disc with wireless temperature monitoring system.
    Joseph K; Ibrahim F; Cho J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3217-20. PubMed ID: 26736977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implantable drug delivery device using frequency-controlled wireless hydrogel microvalves.
    Rahimi S; Sarraf EH; Wong GK; Takahata K
    Biomed Microdevices; 2011 Apr; 13(2):267-77. PubMed ID: 21161600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive Study of the Flow Control Strategy in a Wirelessly Charged Centrifugal Microfluidic Platform with Two Rotation Axes.
    Zhu Y; Chen Y; Meng X; Wang J; Lu Y; Xu Y; Cheng J
    Anal Chem; 2017 Sep; 89(17):9315-9321. PubMed ID: 28764326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wirelessly powered and remotely controlled valve-array for highly multiplexed analytical assay automation on a centrifugal microfluidic platform.
    Torres Delgado SM; Kinahan DJ; Nirupa Julius LA; Mallette A; Ardila DS; Mishra R; Miyazaki CM; Korvink JG; Ducrée J; Mager D
    Biosens Bioelectron; 2018 Jun; 109():214-223. PubMed ID: 29567566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centrifugal microfluidics for biomedical applications.
    Gorkin R; Park J; Siegrist J; Amasia M; Lee BS; Park JM; Kim J; Kim H; Madou M; Cho YK
    Lab Chip; 2010 Jul; 10(14):1758-73. PubMed ID: 20512178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A lab-in-a-droplet bioassay strategy for centrifugal microfluidics with density difference pumping, power to disc and bidirectional flow control.
    Wang G; Ho HP; Chen Q; Yang AK; Kwok HC; Wu SY; Kong SK; Kwan YW; Zhang X
    Lab Chip; 2013 Sep; 13(18):3698-706. PubMed ID: 23881222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The eLoaD platform endows centrifugal microfluidics with on-disc power and communication.
    Torres Delgado SM; Korvink JG; Mager D
    Biosens Bioelectron; 2018 Oct; 117():464-473. PubMed ID: 29982115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Centrifugal microfluidic platforms: advanced unit operations and applications.
    Strohmeier O; Keller M; Schwemmer F; Zehnle S; Mark D; von Stetten F; Zengerle R; Paust N
    Chem Soc Rev; 2015 Oct; 44(17):6187-229. PubMed ID: 26035697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A High-Resolution Minimicroscope System for Wireless Real-Time Monitoring.
    Wang Z; Boddeda A; Parker B; Samanipour R; Ghosh S; Menard F; Kim K
    IEEE Trans Biomed Eng; 2018 Jul; 65(7):1524-1531. PubMed ID: 28880156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor-assisted chip-in-a-tube (MACT): a new 2- and 3-dimensional centrifugal microfluidic platform for biomedical applications.
    Tang M; Loo J; Wang Y; Zhang X; Kwok HC; Hui M; Leung CC; Kong SK; Wang G; Ho HP
    Lab Chip; 2017 Jan; 17(3):474-483. PubMed ID: 28009878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wireless Hyperthermia Stent System for Restenosis Treatment and Testing With Swine Model.
    Yi Y; Chen J; Selvaraj M; Hsiang Y; Takahata K
    IEEE Trans Biomed Eng; 2020 Apr; 67(4):1097-1104. PubMed ID: 31449000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireless displacement sensing of micromachined spiral-coil actuator using resonant frequency tracking.
    Ali MS; AbuZaiter A; Schlosser C; Bycraft B; Takahata K
    Sensors (Basel); 2014 Jul; 14(7):12399-409. PubMed ID: 25014100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wirelessly Heating Stents via Radiofrequency Resonance toward Enabling Endovascular Hyperthermia.
    Yi Y; Chen J; Hsiang Y; Takahata K
    Adv Healthc Mater; 2019 Nov; 8(22):e1900708. PubMed ID: 31625695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A linear concentration gradient generator based on multi-layered centrifugal microfluidics and its application in antimicrobial susceptibility testing.
    Tang M; Huang X; Chu Q; Ning X; Wang Y; Kong SK; Zhang X; Wang G; Ho HP
    Lab Chip; 2018 May; 18(10):1452-1460. PubMed ID: 29664087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel liquid equilibrium valving on centrifugal microfluidic CD platform.
    Al-Faqheri W; Ibrahim F; Thio TH; Arof H; Madou M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5509-12. PubMed ID: 24110984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-controlled wireless shape memory polymer microactuator for drug delivery application.
    Zainal MA; Ahmad A; Mohamed Ali MS
    Biomed Microdevices; 2017 Mar; 19(1):8. PubMed ID: 28124762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical velocimetry on centrifugal microfluidic platforms.
    Abi-Samra K; Kim TH; Park DK; Kim N; Kim J; Kim H; Cho YK; Madou M
    Lab Chip; 2013 Aug; 13(16):3253-60. PubMed ID: 23787459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wirelessly activated device with an integrated ionic polymer metal composite (IPMC) cantilever valve for targeted drug delivery.
    Cheong HR; Nguyen NT; Khaw MK; Teoh BY; Chee PS
    Lab Chip; 2018 Oct; 18(20):3207-3215. PubMed ID: 30229248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic timer for timed valving and pumping in centrifugal microfluidics.
    Schwemmer F; Zehnle S; Mark D; von Stetten F; Zengerle R; Paust N
    Lab Chip; 2015 Mar; 15(6):1545-53. PubMed ID: 25648105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.