BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24110991)

  • 21. Current applications of mathematical models of the interstitial cells of Cajal in the gastrointestinal tract.
    Mah SA; Avci R; Cheng LK; Du P
    WIREs Mech Dis; 2021 Mar; 13(2):e1507. PubMed ID: 33026190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of interstitial cells of Cajal loss and aging on slow wave conduction velocity in the human stomach.
    Wang TH; Angeli TR; Ishida S; Du P; Gharibans A; Paskaranandavadivel N; Imai Y; Miyagawa T; Abell TL; Farrugia G; Cheng LK; O'Grady G
    Physiol Rep; 2021 Jan; 8(24):e14659. PubMed ID: 33355992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of Ca(2+) influx in spontaneous Ca(2+) wave propagation in interstitial cells of Cajal from the rabbit urethra.
    Drumm BT; Large RJ; Hollywood MA; Thornbury KD; Baker SA; Harvey BJ; McHale NG; Sergeant GP
    J Physiol; 2015 Aug; 593(15):3333-50. PubMed ID: 26046824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuum Based Bioelectrical Simulations using Structurally Realistic Gastrointestinal Pacemaker Cell Networks.
    Avci R; Paskaranandavadivel N; Du P; Vanderwinden JM; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2483-2486. PubMed ID: 33018510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A model to study the phenotypic changes of interstitial cells of Cajal in gastrointestinal diseases.
    Ro S; Park C; Jin J; Zheng H; Blair PJ; Redelman D; Ward SM; Yan W; Sanders KM
    Gastroenterology; 2010 Mar; 138(3):1068-78.e1-2. PubMed ID: 19917283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Ca(2+)-activated Cl(-) conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity.
    Zhu MH; Kim TW; Ro S; Yan W; Ward SM; Koh SD; Sanders KM
    J Physiol; 2009 Oct; 587(Pt 20):4905-18. PubMed ID: 19703958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ICC-MY coordinate smooth muscle electrical and mechanical activity in the murine small intestine.
    Hennig GW; Spencer NJ; Jokela-Willis S; Bayguinov PO; Lee HT; Ritchie LA; Ward SM; Smith TK; Sanders KM
    Neurogastroenterol Motil; 2010 May; 22(5):e138-51. PubMed ID: 20059699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lack of serotonin 5-HT2B receptor alters proliferation and network volume of interstitial cells of Cajal in vivo.
    Tharayil VS; Wouters MM; Stanich JE; Roeder JL; Lei S; Beyder A; Gomez-Pinilla PJ; Gershon MD; Maroteaux L; Gibbons SJ; Farrugia G
    Neurogastroenterol Motil; 2010 Apr; 22(4):462-9, e109-10. PubMed ID: 19941613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitrergic signaling via interstitial cells of Cajal and smooth muscle cells influences circular smooth muscle contractility in murine colon.
    Beck K; Friebe A; Voussen B
    Neurogastroenterol Motil; 2018 Jun; 30(6):e13300. PubMed ID: 29377328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simplified biophysical cell model for gastric slow wave entrainment simulation.
    Du P; Gao J; O'Grady G; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6547-50. PubMed ID: 24111242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationships between gastric slow wave frequency, velocity, and extracellular amplitude studied by a joint experimental-theoretical approach.
    Wang TH; Du P; Angeli TR; Paskaranandavadivel N; Erickson JC; Abell TL; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2018 Jan; 30(1):. PubMed ID: 28695661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling.
    Du P; Hameed A; Angeli TR; Lahr C; Abell TL; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2015 Oct; 27(10):1409-22. PubMed ID: 26251163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles.
    Hwang SJ; Blair PJ; Britton FC; O'Driscoll KE; Hennig G; Bayguinov YR; Rock JR; Harfe BD; Sanders KM; Ward SM
    J Physiol; 2009 Oct; 587(Pt 20):4887-904. PubMed ID: 19687122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stem Cell Factor/Kit Signal Insufficiency Contributes to Hypoxia-Induced Intestinal Motility Dysfunctions in Neonatal Mice.
    Ren H; Han J; Li Z; Xiong Z
    Dig Dis Sci; 2017 May; 62(5):1193-1203. PubMed ID: 28315973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clustering of Ca
    Drumm BT; Hennig GW; Battersby MJ; Cunningham EK; Sung TS; Ward SM; Sanders KM; Baker SA
    J Gen Physiol; 2017 Jul; 149(7):703-725. PubMed ID: 28592421
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accelerated intestinal transit in inbred mice with an increased number of interstitial cells of Cajal.
    Bellier S; Da Silva NR; Aubin-Houzelstein G; Elbaz C; Vanderwinden JM; Panthier JJ
    Am J Physiol Gastrointest Liver Physiol; 2005 Jan; 288(1):G151-8. PubMed ID: 15297259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The first intestinal motility patterns in fetal mice are not mediated by neurons or interstitial cells of Cajal.
    Roberts RR; Ellis M; Gwynne RM; Bergner AJ; Lewis MD; Beckett EA; Bornstein JC; Young HM
    J Physiol; 2010 Apr; 588(Pt 7):1153-69. PubMed ID: 20142273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The origin of segmentation motor activity in the intestine.
    Huizinga JD; Chen JH; Zhu YF; Pawelka A; McGinn RJ; Bardakjian BL; Parsons SP; Kunze WA; Wu RY; Bercik P; Khoshdel A; Chen S; Yin S; Zhang Q; Yu Y; Gao Q; Li K; Hu X; Zarate N; Collins P; Pistilli M; Ma J; Zhang R; Chen D
    Nat Commun; 2014; 5():3326. PubMed ID: 24561718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional physiology of the human terminal antrum defined by high-resolution electrical mapping and computational modeling.
    Berry R; Miyagawa T; Paskaranandavadivel N; Du P; Angeli TR; Trew ML; Windsor JA; Imai Y; O'Grady G; Cheng LK
    Am J Physiol Gastrointest Liver Physiol; 2016 Nov; 311(5):G895-G902. PubMed ID: 27659422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A framework for the design of a closed-loop gastric pacemaker for treating conduction block.
    Wang L; Malik A; Roop PS; Cheng LK; Paskaranandavadivel N
    Comput Methods Programs Biomed; 2022 Apr; 216():106652. PubMed ID: 35124479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.