These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 24111009)
1. Novel use of Empirical Mode Decomposition in single-trial classification of motor imagery for use in brain-computer interfaces. Davies SR; James CJ Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5610-3. PubMed ID: 24111009 [TBL] [Abstract][Full Text] [Related]
2. Application of Hilbert-Huang transform for the study of motor imagery tasks. Wang L; Xu G; Wang J; Yang S; Yan W Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3848-51. PubMed ID: 19163552 [TBL] [Abstract][Full Text] [Related]
3. EEG rhythm separation and time-frequency analysis of fast multivariate empirical mode decomposition for motor imagery BCI. Jiao Y; Zheng Q; Qiao D; Lang X; Xie L; Pan Y Biol Cybern; 2024 Apr; 118(1-2):21-37. PubMed ID: 38472417 [TBL] [Abstract][Full Text] [Related]
4. NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI. Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G Med Eng Phys; 2015 Mar; 37(3):280-6. PubMed ID: 25640806 [TBL] [Abstract][Full Text] [Related]
5. [Research of movement imagery EEG based on Hilbert-Huang transform and BP neural network]. Jin H; Zhang Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):249-53. PubMed ID: 23858742 [TBL] [Abstract][Full Text] [Related]
6. Quantifying mode mixing and leakage in multivariate empirical mode decomposition and application in motor imagery-based brain-computer interface system. Zheng Y; Xu G Med Biol Eng Comput; 2019 Jun; 57(6):1297-1311. PubMed ID: 30737625 [TBL] [Abstract][Full Text] [Related]
7. Mu rhythm desynchronization detection based on empirical mode decomposition. Wan B; Zhou Z; Xu L; Ming D; Qi H; Cheng L Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2232-5. PubMed ID: 19965154 [TBL] [Abstract][Full Text] [Related]
8. Using Empirical Mode Decomposition with Spatio-Temporal dynamics to classify single-trial Motor Imagery in BCI. Davies SR; James CJ Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4631-4. PubMed ID: 25571024 [TBL] [Abstract][Full Text] [Related]
9. Nonlinear and nonstationary framework for feature extraction and classification of motor imagery. Trad D; Al-ani T; Monacelli E; Jemni M IEEE Int Conf Rehabil Robot; 2011; 2011():5975488. PubMed ID: 22275685 [TBL] [Abstract][Full Text] [Related]
10. Assignment of Empirical Mode Decomposition Components and Its Application to Biomedical Signals. Schiecke K; Schmidt C; Piper D; Putsche P; Feucht M; Witte H; Leistritz L Methods Inf Med; 2015; 54(5):461-73. PubMed ID: 26419400 [TBL] [Abstract][Full Text] [Related]
11. Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces. Rodrigues PG; Filho CAS; Attux R; Castellano G; Soriano DC Med Biol Eng Comput; 2019 Aug; 57(8):1709-1725. PubMed ID: 31127535 [TBL] [Abstract][Full Text] [Related]
12. Reducing calibration time in motor imagery-based BCIs by data alignment and empirical mode decomposition. Xiong W; Wei Q PLoS One; 2022; 17(2):e0263641. PubMed ID: 35134085 [TBL] [Abstract][Full Text] [Related]
13. Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method. Taran S; Bajaj V Comput Methods Programs Biomed; 2019 May; 173():157-165. PubMed ID: 31046991 [TBL] [Abstract][Full Text] [Related]
14. EEG oscillatory patterns and classification of sequential compound limb motor imagery. Yi W; Qiu S; Wang K; Qi H; He F; Zhou P; Zhang L; Ming D J Neuroeng Rehabil; 2016 Jan; 13():11. PubMed ID: 26822435 [TBL] [Abstract][Full Text] [Related]
15. Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface. Hänselmann S; Schneiders M; Weidner N; Rupp R J Neuroeng Rehabil; 2015 Aug; 12():71. PubMed ID: 26303933 [TBL] [Abstract][Full Text] [Related]
16. Portable brain-computer interface based on novel convolutional neural network. Zhang Y; Zhang X; Sun H; Fan Z; Zhong X Comput Biol Med; 2019 Apr; 107():248-256. PubMed ID: 30856388 [TBL] [Abstract][Full Text] [Related]
17. Epileptic seizure classifications using empirical mode decomposition and its derivative. Karabiber Cura O; Kocaaslan Atli S; Türe HS; Akan A Biomed Eng Online; 2020 Feb; 19(1):10. PubMed ID: 32059668 [TBL] [Abstract][Full Text] [Related]
18. Classification of motor imagery BCI using multivariate empirical mode decomposition. Park C; Looney D; Naveed ur Rehman ; Ahrabian A; Mandic DP IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):10-22. PubMed ID: 23204288 [TBL] [Abstract][Full Text] [Related]
19. [Three-class Motor Imagery Classification Based on Optimal Sub-band Features of Independent Components]. Kang S; Zhou B; Wu X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Apr; 33(2):208-15. PubMed ID: 29708317 [TBL] [Abstract][Full Text] [Related]
20. A novel method of motor imagery classification using eeg signal. K V; A D; J M; M S; A A; Iraj SA Artif Intell Med; 2020 Mar; 103():101787. PubMed ID: 32143794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]