These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24111037)

  • 1. A new control method depending on primary phase angle of transcutaneous energy transmission system for artificial heart.
    Miura H; Saito I; Sato F; Shiraishi Y; Yambe T; Matsuki H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5723-6. PubMed ID: 24111037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundamental analysis and development of the current and voltage control method by changing the driving frequency for the transcutaneous energy transmission system.
    Miura H; Yamada A; Shiraishi Y; Yambe T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1319-22. PubMed ID: 26736511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transcutaneous energy transmission system for artificial heart adapting to changing impedance.
    Fu Y; Hu L; Ruan X; Fu X
    Artif Organs; 2015 Apr; 39(4):378-87. PubMed ID: 25349072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary side control of load voltage for transcutaneous energy transmission.
    Fu Y; Hu L; Ruan X; Fu X
    J Artif Organs; 2016 Mar; 19(1):14-20. PubMed ID: 26432434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency optimization of class-D biomedical inductive wireless power transfer systems by means of frequency adjustment.
    Schormans M; Valente V; Demosthenous A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5473-6. PubMed ID: 26737530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study on Chaotic Detection Method of Pacemaker Contact-Less Power Supply].
    Zhou C; Huang M; Li S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Dec; 32(6):1335-42. PubMed ID: 27079110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement in magnetic field immunity of externally-coupled transcutaneous energy transmission system for a totally implantable artificial heart.
    Yamamoto T; Koshiji K; Homma A; Tatsumi E; Taenaka Y
    J Artif Organs; 2008; 11(4):238-40. PubMed ID: 19184291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transcutaneous optical information transmission system for implantable motor-driven artificial hearts.
    Mitamura Y; Okamoto E; Mikami T
    ASAIO Trans; 1990; 36(3):M278-80. PubMed ID: 2252677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Review of wireless energy transmission system for total artificial heart].
    Zhang C; Yang M
    Zhongguo Yi Liao Qi Xie Za Zhi; 2009 Nov; 33(6):425-8. PubMed ID: 20352915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo performance of a transcutaneous energy transmission system with the Penn State motor driven ventricular assist device.
    Weiss WJ; Rosenberg G; Snyder AJ; Pae WE; Richenbacher WE; Pierce WS
    ASAIO Trans; 1989; 35(3):284-8. PubMed ID: 2597465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of current density and specific absorption rate in biological tissue surrounding transcutaneous transformer for an artificial heart.
    Shiba K; Nukaya M; Tsuji T; Koshiji K
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):205-13. PubMed ID: 18232363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcutaneous Energy Transmission System for a Totally Implantable Artificial Heart Using a Two-Wire Archimedean Spiral Coil.
    Okinaga T; Yamamoto T; Koshiji K
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5407-5410. PubMed ID: 34892349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Downsizing of coreless coils for transcutaneous energy transmission in implantable devices - improvement of coupling factor and efficiency between coils.
    Seshimo T; Yamamoto T; Koshiji K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1871-4. PubMed ID: 24110076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The effect of frequency characteristics of oscillatory circuits and power source on the efficiency of wireless energy transfer based on inductive coupling].
    Danilov AA; Mindubaev EA
    Med Tekh; 2014; (6):27-9. PubMed ID: 25854066
    [No Abstract]   [Full Text] [Related]  

  • 15. [An experimental setup for studying wireless inductive-coupling transmission of energy in auxiliary blood circulation systems].
    Danilov AA; Itkin GP; Ustinov AO
    Med Tekh; 2011; (6):21-5. PubMed ID: 22312871
    [No Abstract]   [Full Text] [Related]  

  • 16. Inductive coupling links for lowest misalignment effects in transcutaneous implanted devices.
    Abbas SM; Hannan MA; Samad SA; Hussain A
    Biomed Tech (Berl); 2014 Jun; 59(3):257-68. PubMed ID: 24445231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an autotuned transcutaneous energy transfer system.
    Miller JA; Bélanger G; Mussivand T
    ASAIO J; 1993; 39(3):M706-10. PubMed ID: 8268629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive transcutaneous power delivery for an artificial anal sphincter system.
    Zan P; Yan G; Liu H; Luo N; Zhao Y
    J Med Eng Technol; 2009; 33(2):136-41. PubMed ID: 19085203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of unifying transcutaneous transformer for transmission of energy and information.
    Tamura N; Yamamoto T; Aoki H; Koshiji K; Homma A; Tatsumi E; Taenaka Y
    J Artif Organs; 2009; 12(2):138-40. PubMed ID: 19536632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review.
    Bocan KN; Sejdić E
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26999154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.