These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 24111061)

  • 41. Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions.
    Waris A; Niazi IK; Jamil M; Englehart K; Jensen W; Kamavuako EN
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1526-1534. PubMed ID: 30106701
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A multifunctional prosthesis control system based on time series identification of EMG signals using microprocessors.
    Graupe D; Beex AA; Monlux WJ; Magnussen I
    Bull Prosthet Res; 1977; 10(27):4-16. PubMed ID: 603818
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Systematic Study on Electromyography-Based Hand Gesture Recognition for Assistive Robots Using Deep Learning and Machine Learning Models.
    Gopal P; Gesta A; Mohebbi A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632058
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Data Driven Spatial Filtering Can Enhance Abstract Myoelectric Control in Amputees.
    Dyson M; Nazarpour K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3770-3773. PubMed ID: 30441187
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features.
    Khushaba RN; Takruri M; Miro JV; Kodagoda S
    Neural Netw; 2014 Jul; 55():42-58. PubMed ID: 24721224
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An open and configurable embedded system for EMG pattern recognition implementation for artificial arms.
    Jun Liu ; Fan Zhang ; Huang HH
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4095-8. PubMed ID: 25570892
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiresolution Dual-Polynomial Decomposition Approach for Optimized Characterization of Motor Intent in Myoelectric Control Systems.
    Samuel OW; Asogbon MG; Khushaba R; Kulwa F; Li G
    IEEE Trans Biomed Eng; 2023 May; 70(5):1516-1527. PubMed ID: 36374882
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Prosthetic Hand Body Area Controller Based on Efficient Pattern Recognition Control Strategies.
    Benatti S; Milosevic B; Farella E; Gruppioni E; Benini L
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28420135
    [TBL] [Abstract][Full Text] [Related]  

  • 49. IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis.
    Bennett DA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):419-427. PubMed ID: 28320673
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improving the Robustness of Real-Time Myoelectric Pattern Recognition against Arm Position Changes in Transradial Amputees.
    Geng Y; Samuel OW; Wei Y; Li G
    Biomed Res Int; 2017; 2017():5090454. PubMed ID: 28523276
    [TBL] [Abstract][Full Text] [Related]  

  • 51. User experience of controlling the DEKA Arm with EMG pattern recognition.
    Resnik LJ; Acluche F; Lieberman Klinger S
    PLoS One; 2018; 13(9):e0203987. PubMed ID: 30240420
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of the weight actions of the hand prosthesis on the performance of pattern recognition based myoelectric control: preliminary study.
    Cipriani C; Sassu R; Controzzi M; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1620-3. PubMed ID: 22254633
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatially Filtered Low-Density EMG and Time-Domain Descriptors Improves Hand Movement Recognition.
    Al Taee AA; Khushaba RN; Al-Jumaily A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2671-2674. PubMed ID: 31946445
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning.
    Vasan G; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Limb Position Tolerant Pattern Recognition for Myoelectric Prosthesis Control with Adaptive Sparse Representations From Extreme Learning.
    Betthauser JL; Hunt CL; Osborn LE; Masters MR; Levay G; Kaliki RR; Thakor NV
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):770-778. PubMed ID: 28650804
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multi-Grip Classification-Based Prosthesis Control With Two EMG-IMU Sensors.
    Krasoulis A; Vijayakumar S; Nazarpour K
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):508-518. PubMed ID: 31841413
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Swarm-wavelet based extreme learning machine for finger movement classification on transradial amputees.
    Anam K; Al-Jumaily A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4192-5. PubMed ID: 25570916
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees.
    Anam K; Al-Jumaily A
    Neural Netw; 2017 Jan; 85():51-68. PubMed ID: 27814466
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Performance of Combined Surface and Intramuscular EMG for Classification of Hand Movements.
    Rehman MZU; Gillani SO; Waris A; Jochumsen M; Niazi IK; Kamavuako EN
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5220-5223. PubMed ID: 30441515
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Understanding Limb Position and External Load Effects on Real-Time Pattern Recognition Control in Amputees.
    Teh Y; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1605-1613. PubMed ID: 32396094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.