These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 24111061)

  • 61. Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees.
    Anam K; Al-Jumaily A
    Neural Netw; 2017 Jan; 85():51-68. PubMed ID: 27814466
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Performance of Combined Surface and Intramuscular EMG for Classification of Hand Movements.
    Rehman MZU; Gillani SO; Waris A; Jochumsen M; Niazi IK; Kamavuako EN
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5220-5223. PubMed ID: 30441515
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Real-time myoelectric decoding of individual finger movements for a virtual target task.
    Smith RJ; Huberdeau D; Tenore F; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2376-9. PubMed ID: 19965192
    [TBL] [Abstract][Full Text] [Related]  

  • 64. EMG and ENG-envelope pattern recognition for prosthetic hand control.
    Noce E; Dellacasa Bellingegni A; Ciancio AL; Sacchetti R; Davalli A; Guglielmelli E; Zollo L
    J Neurosci Methods; 2019 Jan; 311():38-46. PubMed ID: 30316891
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Resolving the effect of wrist position on myoelectric pattern recognition control.
    Adewuyi AA; Hargrove LJ; Kuiken TA
    J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A strategy for minimizing the effect of misclassifications during real time pattern recognition myoelectric control.
    Simon AM; Hargrove LJ; Lock BA; Kuiken TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1327-30. PubMed ID: 19964513
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Targeted muscle reinnervation to improve electromyography signals for advanced myoelectric prosthetic limbs: a series of seven patients.
    Myers H; Lu D; Gray SJ; Bruscino-Raiola F
    ANZ J Surg; 2020 Apr; 90(4):591-596. PubMed ID: 31989741
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review.
    Carey SL; Lura DJ; Highsmith MJ; ;
    J Rehabil Res Dev; 2015; 52(3):247-62. PubMed ID: 26230500
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Myoelectric digit action decoding with multi-output, multi-class classification: an offline analysis.
    Krasoulis A; Nazarpour K
    Sci Rep; 2020 Oct; 10(1):16872. PubMed ID: 33037253
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients.
    Tkach DC; Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):727-34. PubMed ID: 24760931
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Classification complexity in myoelectric pattern recognition.
    Nilsson N; Håkansson B; Ortiz-Catalan M
    J Neuroeng Rehabil; 2017 Jul; 14(1):68. PubMed ID: 28693533
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Interface Prostheses With Classifier-Feedback-Based User Training.
    Fang Y; Zhou D; Li K; Liu H
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2575-2583. PubMed ID: 28026744
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Prosthesis-guided training of pattern recognition-controlled myoelectric prosthesis.
    Chicoine CL; Simon AM; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1876-9. PubMed ID: 23366279
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Computational approaches to decode grasping force and velocity level in upper-limb amputee from intraneural peripheral signals.
    Cracchiolo M; Panarese A; Valle G; Strauss I; Granata G; Iorio RD; Stieglitz T; Rossini PM; Mazzoni A; Micera S
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33725672
    [No Abstract]   [Full Text] [Related]  

  • 75. Myoelectric Pattern Recognition Outperforms Direct Control for Transhumeral Amputees with Targeted Muscle Reinnervation: A Randomized Clinical Trial.
    Hargrove LJ; Miller LA; Turner K; Kuiken TA
    Sci Rep; 2017 Oct; 7(1):13840. PubMed ID: 29062019
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Classification of standing and sitting phases based on in-socket piezoelectric sensors in a transfemoral amputee.
    Yahya T; Hamzaid NA; Ali S; Jasni F; Shasmin HN
    Biomed Tech (Berl); 2020 Oct; 65(5):567-576. PubMed ID: 32459189
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Real-time evaluation of a myoelectric control method for high-level upper limb amputees based on homologous leg movements.
    Lyons KR; Joshi SS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6365-6368. PubMed ID: 28269705
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Myoelectric neural interface enables accurate control of a virtual multiple degree-of-freedom foot-ankle prosthesis.
    Tkach DC; Lipschutz RD; Finucane SB; Hargrove LJ
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650499. PubMed ID: 24187314
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optimizing pattern recognition-based control for partial-hand prosthesis application.
    Earley EJ; Adewuyi AA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3574-7. PubMed ID: 25570763
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Novel Time-Domain Descriptor for Improved Prediction of Upper Limb Movement Intent in EMG-PR System.
    Samuel OW; Asogbon MG; Geng Y; Chen S; Feng P; Chuang L; Wang L; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3513-3516. PubMed ID: 30441136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.