These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 24111119)
1. Selection of cortical neurons for identifying movement transitions in stand and squat. Ma X; Hu D; Huang J; Li W; He J Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6051-4. PubMed ID: 24111119 [TBL] [Abstract][Full Text] [Related]
2. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces. Xu K; Wang Y; Wang Y; Wang F; Hao Y; Zhang S; Zhang Q; Chen W; Zheng X J Neural Eng; 2013 Apr; 10(2):026008. PubMed ID: 23428877 [TBL] [Abstract][Full Text] [Related]
3. Decoding the non-stationary neuron spike trains by dual Monte Carlo point process estimation in motor Brain Machine Interfaces. Liao Y; Li H; Zhang Q; Fan G; Wang Y; Zheng X Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6513-6. PubMed ID: 25571488 [TBL] [Abstract][Full Text] [Related]
4. Neuronal representation of stand and squat in the primary motor cortex of monkeys. Ma C; Ma X; Zhang H; Xu J; He J Behav Brain Funct; 2015 Apr; 11():15. PubMed ID: 25881063 [TBL] [Abstract][Full Text] [Related]
5. Ascertaining neuron importance by information theoretical analysis in motor Brain-Machine Interfaces. Wang Y; Principe JC; Sanchez JC Neural Netw; 2009; 22(5-6):781-90. PubMed ID: 19615852 [TBL] [Abstract][Full Text] [Related]
6. On the asynchronously continuous control of mobile robot movement by motor cortical spiking activity. Xu Z; So RQ; Toe KK; Ang KK; Guan C Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3049-52. PubMed ID: 25570634 [TBL] [Abstract][Full Text] [Related]
7. A method for investigating cortical control of stand and squat in conscious behavioral monkeys. Ma C; He J J Neurosci Methods; 2010 Sep; 192(1):1-6. PubMed ID: 20600310 [TBL] [Abstract][Full Text] [Related]
8. Decoding with Calcium Signals from Layer 2/3 Motor Cortex during A Pressing Movement. Wang R; Han J; Chen J; Li M; Feng L; Zhang S Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3054-3057. PubMed ID: 31946532 [TBL] [Abstract][Full Text] [Related]
9. Investigation into machine learning algorithms as applied to motor cortex signals for classification of movement stages. Hollingshead RL; Putrino D; Ghosh S; Tan T Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1290-3. PubMed ID: 25570202 [TBL] [Abstract][Full Text] [Related]
10. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces. Wang Y; Paiva AR; PrÃncipe JC; Sanchez JC Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797 [TBL] [Abstract][Full Text] [Related]
11. Neuron-Type-Specific Utility in a Brain-Machine Interface: a Pilot Study. Garcia-Garcia MG; Bergquist AJ; Vargas-Perez H; Nagai MK; Zariffa J; Marquez-Chin C; Popovic MR J Spinal Cord Med; 2017 Nov; 40(6):715-722. PubMed ID: 28899231 [TBL] [Abstract][Full Text] [Related]
12. Closed-loop cortical control of direction using support vector machines. Olson BP; Si J; Hu J; He J IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):72-80. PubMed ID: 15813408 [TBL] [Abstract][Full Text] [Related]
13. Neuron selection based on deflection coefficient maximization for the neural decoding of dexterous finger movements. Kim YH; Thakor NV; Schieber MH; Kim HN IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):374-84. PubMed ID: 25347884 [TBL] [Abstract][Full Text] [Related]
14. Estimation and visualization of neuronal functional connectivity in motor tasks. Li L; Seth S; Park I; Sanchez JC; Principe JC Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2926-9. PubMed ID: 19964602 [TBL] [Abstract][Full Text] [Related]
15. Monte Carlo point process estimation of electromyographic envelopes from motor cortical spikes for brain-machine interfaces. Liao Y; She X; Wang Y; Zhang S; Zhang Q; Zheng X; Principe JC J Neural Eng; 2015 Dec; 12(6):066014. PubMed ID: 26468607 [TBL] [Abstract][Full Text] [Related]
16. Recasting brain-machine interface design from a physical control system perspective. Zhang Y; Chase SM J Comput Neurosci; 2015 Oct; 39(2):107-18. PubMed ID: 26142906 [TBL] [Abstract][Full Text] [Related]
17. A study of predicting movement intentions in various spatial reaching tasks from M1 neural activities. Ma X; Zhang P; Huang H; He J Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2666-9. PubMed ID: 25570539 [TBL] [Abstract][Full Text] [Related]
18. Continuous decoding of grasping tasks for a prospective implantable cortical neuroprosthesis. Carpaneto J; Raos V; Umiltà MA; Fogassi L; Murata A; Gallese V; Micera S J Neuroeng Rehabil; 2012 Nov; 9():84. PubMed ID: 23181471 [TBL] [Abstract][Full Text] [Related]
19. Latent Factors and Dynamics in Motor Cortex and Their Application to Brain-Machine Interfaces. Pandarinath C; Ames KC; Russo AA; Farshchian A; Miller LE; Dyer EL; Kao JC J Neurosci; 2018 Oct; 38(44):9390-9401. PubMed ID: 30381431 [TBL] [Abstract][Full Text] [Related]
20. New KF-PP-SVM classification method for EEG in brain-computer interfaces. Yang B; Han Z; Zan P; Wang Q Biomed Mater Eng; 2014; 24(6):3665-73. PubMed ID: 25227081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]