These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24111269)

  • 1. Fabrication of perfusable vasculatures by using micromolding and electrochemical cell transfer.
    Osaki T; Kakegawa T; Mochizuki N; Fukuda J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6655-8. PubMed ID: 24111269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid engineering of endothelial cell-lined vascular-like structures in in situ crosslinkable hydrogels.
    Kageyama T; Kakegawa T; Osaki T; Enomoto J; Ito T; Nittami T; Fukuda J
    Biofabrication; 2014 Jun; 6(2):025006. PubMed ID: 24658207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of perfusable double-layered vascular structures using contraction of spheroid-embedded hydrogel and electrochemical cell detachment.
    Shimazu Y; Zhang B; Yue Z; Wallace GG; Fukuda J
    J Biosci Bioeng; 2019 Jan; 127(1):114-120. PubMed ID: 30072116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acceleration of vascular sprouting from fabricated perfusable vascular-like structures.
    Osaki T; Kakegawa T; Kageyama T; Enomoto J; Nittami T; Fukuda J
    PLoS One; 2015; 10(4):e0123735. PubMed ID: 25860890
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Kageyama T; Osaki T; Enomoto J; Myasnikova D; Nittami T; Hozumi T; Ito T; Fukuda J
    ACS Biomater Sci Eng; 2016 Jun; 2(6):1059-1066. PubMed ID: 33429513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel.
    He J; Chen R; Lu Y; Zhan L; Liu Y; Li D; Jin Z
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():53-60. PubMed ID: 26652348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinstructive Layer-by-Layer-Coated Customizable 3D Printed Perfusable Microchannels Embedded in Photocrosslinkable Hydrogels for Vascular Tissue Engineering.
    Sousa CFV; Saraiva CA; Correia TR; Pesqueira T; Patrício SG; Rial-Hermida MI; Borges J; Mano JF
    Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34200682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-casting approach for vascular networks in cellularized hydrogels.
    Justin AW; Brooks RA; Markaki AE
    J R Soc Interface; 2016 Dec; 13(125):. PubMed ID: 27928031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures.
    Sadr N; Zhu M; Osaki T; Kakegawa T; Yang Y; Moretti M; Fukuda J; Khademhosseini A
    Biomaterials; 2011 Oct; 32(30):7479-90. PubMed ID: 21802723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of biodegradable synthetic perfusable vascular networks via a combination of electrospinning and robocasting.
    Ortega I; Dew L; Kelly AG; Chong CK; MacNeil S; Claeyssens F
    Biomater Sci; 2015 Apr; 3(4):592-6. PubMed ID: 26222419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical detachment of cells for engineering capillary-like structures in a photocrosslinkable hydrogel.
    Osaki T; Kakegawa T; Suzuki H; Fukuda J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2451-4. PubMed ID: 22254837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability.
    Li S; Nih LR; Bachman H; Fei P; Li Y; Nam E; Dimatteo R; Carmichael ST; Barker TH; Segura T
    Nat Mater; 2017 Sep; 16(9):953-961. PubMed ID: 28783156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs.
    Bertassoni LE; Cecconi M; Manoharan V; Nikkhah M; Hjortnaes J; Cristino AL; Barabaschi G; Demarchi D; Dokmeci MR; Yang Y; Khademhosseini A
    Lab Chip; 2014 Jul; 14(13):2202-11. PubMed ID: 24860845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gelatin-based micro-hydrogel carrying genetically engineered human endothelial cells for neovascularization.
    Choi YH; Kim SH; Kim IS; Kim K; Kwon SK; Hwang NS
    Acta Biomater; 2019 Sep; 95():285-296. PubMed ID: 30710712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multipotency expression of human adipose stem cells in filament-like alginate and gelatin derivative hydrogel fabricated through visible light-initiated crosslinking.
    Khanmohammadi M; Nemati S; Ai J; Khademi F
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109808. PubMed ID: 31349492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of large perfusable macroporous cell-laden hydrogel scaffolds using microbial transglutaminase.
    Chen PY; Yang KC; Wu CC; Yu JH; Lin FH; Sun JS
    Acta Biomater; 2014 Feb; 10(2):912-20. PubMed ID: 24262131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of immobilizing of low molecular weight hyaluronic acid within gelatin-based hydrogel through enzymatic reaction on behavior of enclosed endothelial cells.
    Khanmohammadi M; Sakai S; Taya M
    Int J Biol Macromol; 2017 Apr; 97():308-316. PubMed ID: 28089929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
    Heo DN; Hospodiuk M; Ozbolat IT
    Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element.
    Golden AP; Tien J
    Lab Chip; 2007 Jun; 7(6):720-5. PubMed ID: 17538713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bottom-up approach to build osteon-like structure by cell-laden photocrosslinkable hydrogel.
    Zuo Y; Xiao W; Chen X; Tang Y; Luo H; Fan H
    Chem Commun (Camb); 2012 Mar; 48(26):3170-2. PubMed ID: 22331209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.