BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24111272)

  • 1. Preparation and evaluation of collagen I/ gellan gum/β-TCP microspheres as bone graft substitute materials.
    Ku KC; Lee MW; Kuo SM; Yao CH; Chang SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6667-70. PubMed ID: 24111272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Porous α-TCP/Gellan Gum Scaffold for Bone Tissue Engineering.
    Wen J; Kim IY; Kikuta K; Ohtsuki C
    J Nanosci Nanotechnol; 2016 Mar; 16(3):3077-83. PubMed ID: 27455764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration.
    Liu H; Yazici H; Ergun C; Webster TJ; Bermek H
    Acta Biomater; 2008 Sep; 4(5):1472-9. PubMed ID: 18394980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a bioactive porous collagen/β-tricalcium phosphate bone graft assisting rapid vascularization for bone tissue engineering applications.
    Baheiraei N; Nourani MR; Mortazavi SMJ; Movahedin M; Eyni H; Bagheri F; Norahan MH
    J Biomed Mater Res A; 2018 Jan; 106(1):73-85. PubMed ID: 28879686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microspheres of collagen/beta-TCP with an open network fibrillar structure strengthened by chitosan.
    Chiu CT; Chang WC; Wang YJ
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(3):309-17. PubMed ID: 17573629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of bioactive β-tricalcium phosphate microspheres as bone graft substitute materials.
    Li B; Liu Z; Yang J; Yi Z; Xiao W; Liu X; Yang X; Xu W; Liao X
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1200-1205. PubMed ID: 27772722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary beta-tricalcium phosphate coating prepared by discharging in a modified body fluid enhances collagen immobilization onto titanium.
    Hosaka M; Shibata Y; Miyazaki T
    J Biomed Mater Res B Appl Biomater; 2006 Aug; 78(2):237-42. PubMed ID: 16362961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of osteoclast precursors on gellan gum-based spongy-like hydrogels for bone tissue engineering.
    Maia FR; Musson DS; Naot D; da Silva LP; Bastos AR; Costa JB; Oliveira JM; Correlo VM; Reis RL; Cornish J
    Biomed Mater; 2018 Mar; 13(3):035012. PubMed ID: 29442071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanical properties of calcium phospate ceramics modified by collagen coating and populated by osteoblasts.
    Brodie JC; Merry J; Grant MH
    J Mater Sci Mater Med; 2006 Jan; 17(1):43-8. PubMed ID: 16389471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo stability evaluation of Mg substituted low crystallinity ß-tricalcium phosphate granules fabricated through dissolution-precipitation reaction for bone regeneration.
    Tripathi G; Sugiura Y; Tsuru K; Ishikawa K
    Biomed Mater; 2018 Aug; 13(6):065002. PubMed ID: 30010092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen.
    Brodie JC; Goldie E; Connel G; Merry J; Grant MH
    J Biomed Mater Res A; 2005 Jun; 73(4):409-21. PubMed ID: 15892144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of beta-tricalcium phosphate/collagen sponge composite for bone regeneration.
    Matsuno T; Nakamura T; Kuremoto K; Notazawa S; Nakahara T; Hashimoto Y; Satoh T; Shimizu Y
    Dent Mater J; 2006 Mar; 25(1):138-44. PubMed ID: 16706309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collagen/Beta-Tricalcium Phosphate Based Synthetic Bone Grafts via Dehydrothermal Processing.
    Sarikaya B; Aydin HM
    Biomed Res Int; 2015; 2015():576532. PubMed ID: 26504812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of fibrin, agarose and gellan gum hydrogels as carriers of stem cells and growth factor delivery microspheres for cartilage regeneration.
    Ahearne M; Kelly DJ
    Biomed Mater; 2013 Jun; 8(3):035004. PubMed ID: 23532058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of proliferation and differentiation of mesenchymal stem cells on compressive mechanical behavior of collagen/β-TCP composite scaffold.
    Arahira T; Todo M
    J Mech Behav Biomed Mater; 2014 Nov; 39():218-30. PubMed ID: 25146676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model.
    Won JY; Park CY; Bae JH; Ahn G; Kim C; Lim DH; Cho DW; Yun WS; Shim JH; Huh JB
    Biomed Mater; 2016 Oct; 11(5):055013. PubMed ID: 27716630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro bone formation by mesenchymal stem cells with 3D collagen/β-TCP composite scaffold.
    Todo M; Arahira T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():409-12. PubMed ID: 24109710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a bone substitute material based on alpha-tricalcium phosphate scaffold coated with carbonate apatite/poly-epsilon-caprolactone.
    Bang LT; Ramesh S; Purbolaksono J; Long BD; Chandran H; Ramesh S; Othman R
    Biomed Mater; 2015 Jul; 10(4):045011. PubMed ID: 26225725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers.
    Kim CS; Kim JI; Kim J; Choi SH; Chai JK; Kim CK; Cho KS
    Biomaterials; 2005 May; 26(15):2501-7. PubMed ID: 15585252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marrow stromal osteoblast function on a poly(propylene fumarate)/beta-tricalcium phosphate biodegradable orthopaedic composite.
    Peter SJ; Lu L; Kim DJ; Mikos AG
    Biomaterials; 2000 Jun; 21(12):1207-13. PubMed ID: 10811302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.