These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24111297)

  • 1. Hybrid sparse regularization for magnetic resonance spectroscopy.
    Laruelo A; Chaari L; Batatia H; Ken S; Rowland B; Laprie A; Tourneret JY
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6768-71. PubMed ID: 24111297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatio-spectral regularization to improve magnetic resonance spectroscopic imaging quantification.
    Laruelo A; Chaari L; Tourneret JY; Batatia H; Ken S; Rowland B; Ferrand R; Laprie A
    NMR Biomed; 2016 Jul; 29(7):918-31. PubMed ID: 27166741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sparse spectral deconvolution algorithm for noncartesian MR spectroscopic imaging.
    Bhave S; Eslami R; Jacob M
    Magn Reson Med; 2014 Feb; 71(2):469-76. PubMed ID: 23494949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coil combination of multichannel MRSI data at 7 T: MUSICAL.
    Strasser B; Chmelik M; Robinson SD; Hangel G; Gruber S; Trattnig S; Bogner W
    NMR Biomed; 2013 Dec; 26(12):1796-805. PubMed ID: 24038331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral Wavelet-feature Analysis and Classification Assisted Denoising for enhancing magnetic resonance spectroscopy.
    Ji B; Hosseini Z; Wang L; Zhou L; Tu X; Mao H
    NMR Biomed; 2021 Jun; 34(6):e4497. PubMed ID: 33751691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo phosphorus magnetic resonance spectroscopic imaging of the whole human liver at 7 T using a phosphorus whole-body transmit coil and 16-channel receive array: Repeatability and effects of principal component analysis-based denoising.
    van den Wildenberg L; Gursan A; Seelen LWF; van der Velden TA; Gosselink MWJM; Froeling M; van der Kemp WJM; Klomp DWJ; Prompers JJ
    NMR Biomed; 2023 May; 36(5):e4877. PubMed ID: 36400716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compressed sensing to accelerate magnetic resonance spectroscopic imaging: evaluation and application to 23Na-imaging of mouse hearts.
    Maguire ML; Geethanath S; Lygate CA; Kodibagkar VD; Schneider JE
    J Cardiovasc Magn Reson; 2015 Jun; 17(1):45. PubMed ID: 26073300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial spectral modeling for robust MRSI.
    Eslami R; Jacob M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6663-6. PubMed ID: 19964908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of three-dimensional wavelet encoding spectroscopic imaging: in vivo application and method comparison.
    Young R; Serrai H
    Magn Reson Med; 2009 Jan; 61(1):6-15. PubMed ID: 19097215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Narrow band deformable registration of prostate magnetic resonance imaging, magnetic resonance spectroscopic imaging, and computed tomography studies.
    Schreibmann E; Xing L
    Int J Radiat Oncol Biol Phys; 2005 Jun; 62(2):595-605. PubMed ID: 15890605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Denoising of MR spectroscopic imaging data using statistical selection of principal components.
    Abdoli A; Stoyanova R; Maudsley AA
    MAGMA; 2016 Dec; 29(6):811-822. PubMed ID: 27260664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Denoising MR spectroscopic imaging data with low-rank approximations.
    Nguyen HM; Peng X; Do MN; Liang ZP
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):78-89. PubMed ID: 23070291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast data acquisition techniques in magnetic resonance spectroscopic imaging.
    Vidya Shankar R; Chang JC; Hu HH; Kodibagkar VD
    NMR Biomed; 2019 Mar; 32(3):e4046. PubMed ID: 30637822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A semiadiabatic spectral-spatial spectroscopic imaging (SASSI) sequence for improved high-field MR spectroscopic imaging.
    Feldman RE; Balchandani P
    Magn Reson Med; 2016 Oct; 76(4):1071-82. PubMed ID: 26519948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient wavelet and curvelet-based PET image denoising technique.
    Bal A; Banerjee M; Sharma P; Maitra M
    Med Biol Eng Comput; 2019 Dec; 57(12):2567-2598. PubMed ID: 31654293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slice-selective FID acquisition, localized by outer volume suppression (FIDLOVS) for (1)H-MRSI of the human brain at 7 T with minimal signal loss.
    Henning A; Fuchs A; Murdoch JB; Boesiger P
    NMR Biomed; 2009 Aug; 22(7):683-96. PubMed ID: 19259944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between Short and Long Echo Time Magnetic Resonance Spectroscopic Imaging at 3T and 7T for Evaluating Brain Metabolites in Patients with Glioma.
    Li Y; Lafontaine M; Chang S; Nelson SJ
    ACS Chem Neurosci; 2018 Jan; 9(1):130-137. PubMed ID: 29035503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of compressed sensing reconstruction algorithms for
    Santos-Díaz A; Noseworthy MD
    Magn Reson Imaging; 2019 Jun; 59():88-96. PubMed ID: 30853562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An advanced MRI and MRSI data fusion scheme for enhancing unsupervised brain tumor differentiation.
    Li Y; Liu X; Wei F; Sima DM; Van Cauter S; Himmelreich U; Pi Y; Hu G; Yao Y; Van Huffel S
    Comput Biol Med; 2017 Feb; 81():121-129. PubMed ID: 28061367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phase and frequency alignment protocol for 1H MRSI data of the prostate.
    Wright AJ; Buydens LM; Heerschap A
    NMR Biomed; 2012 May; 25(5):755-65. PubMed ID: 21953616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.