These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 24111331)

  • 1. Bio-robots automatic navigation with graded electric reward stimulation based on Reinforcement Learning.
    Zhang C; Sun C; Gao L; Zheng N; Chen W; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6901-4. PubMed ID: 24111331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-robots automatic navigation with electrical reward stimulation.
    Sun C; Zhang X; Zheng N; Chen W; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():348-51. PubMed ID: 23365901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ratbot automatic navigation by electrical reward stimulation based on distance measurement in unknown environments.
    Gao L; Sun C; Zhang C; Zheng N; Chen W; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5315-8. PubMed ID: 24110936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion states extraction with optical flow for rat-robot automatic navigation.
    Zhang X; Sun C; Zheng N; Chen W; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():976-9. PubMed ID: 23366057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular deep reinforcement learning from reward and punishment for robot navigation.
    Wang J; Elfwing S; Uchibe E
    Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal tuning in a brain-machine interface during Reinforcement Learning.
    Mahmoudi B; Digiovanna J; Principe JC; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4491-4. PubMed ID: 19163713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-Machine Interface-Based Rat-Robot Behavior Control.
    Zhang J; Xu K; Zhang S; Wang Y; Zheng N; Pan G; Chen W; Wu Z; Zheng X
    Adv Exp Med Biol; 2019; 1101():123-147. PubMed ID: 31729674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encode the "STOP" command by photo-stimulation for precise control of rat-robot.
    Chen S; Qu Y; Guo S; Shi Z; Xu K; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2172-5. PubMed ID: 24110152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforcement Learning based Decoding Using Internal Reward for Time Delayed Task in Brain Machine Interfaces.
    Shen X; Zhang X; Huang Y; Chen S; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3351-3354. PubMed ID: 33018722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Influence of Robots' Fairness on Humans' Reward-Punishment Behaviors and Trust in Human-Robot Cooperative Teams.
    Cao J; Chen N
    Hum Factors; 2024 Apr; 66(4):1103-1117. PubMed ID: 36218282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Intelligent Path Planning System of Agricultural Robot via Reinforcement Learning.
    Yang J; Ni J; Li Y; Wen J; Chen D
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The value-complexity trade-off for reinforcement learning based brain-computer interfaces.
    Levi-Aharoni H; Tishby N
    J Neural Eng; 2021 Feb; 17(6):066011. PubMed ID: 33586668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining brain-computer interfaces with deep reinforcement learning for robot training: a feasibility study in a simulation environment.
    Vukelić M; Bui M; Vorreuther A; Lingelbach K
    Front Neuroergon; 2023; 4():1274730. PubMed ID: 38234482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot-assisted motor training: assistance decreases exploration during reinforcement learning.
    Sans-Muntadas A; Duarte JE; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3516-20. PubMed ID: 25570749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuro-Inspired Reinforcement Learning to Improve Trajectory Prediction in Reward-Guided Behavior.
    Chen BW; Yang SH; Kuo CH; Chen JW; Lo YC; Kuo YT; Lin YC; Chang HC; Lin SH; Yu X; Qu B; Ro SV; Lai HY; Chen YY
    Int J Neural Syst; 2022 Sep; 32(9):2250038. PubMed ID: 35989578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement Learning Approaches in Social Robotics.
    Akalin N; Loutfi A
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leveraging Expert Demonstration Features for Deep Reinforcement Learning in Floor Cleaning Robot Navigation.
    Cimurs R; Merchán-Cruz EA
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcement learning algorithms for robotic navigation in dynamic environments.
    Yen GG; Hickey TW
    ISA Trans; 2004 Apr; 43(2):217-30. PubMed ID: 15098582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.