These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 24111331)

  • 21. MOSAIC for multiple-reward environments.
    Sugimoto N; Haruno M; Doya K; Kawato M
    Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A remote constant current stimulator designed for rat-robot navigation.
    Chen X; Xu K; Ye S; Guo S; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2168-71. PubMed ID: 24110151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. State-space Model Based Inverse Reinforcement Learning for Reward Function Estimation in Brain-machine Interfaces.
    Tan J; Zhang X; Wu S; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kernel Temporal Difference based Reinforcement Learning for Brain Machine Interfaces
    Shen X; Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6721-6724. PubMed ID: 34892650
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Memristive device based learning for navigation in robots.
    Sarim M; Kumar M; Jha R; Minai AA
    Bioinspir Biomim; 2017 Nov; 12(6):066011. PubMed ID: 28696337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How automatic speed control based on distance affects user behaviours in telepresence robot navigation within dense conference-like environments.
    Batmaz AU; Maiero J; Kruijff E; Riecke BE; Neustaedter C; Stuerzlinger W
    PLoS One; 2020; 15(11):e0242078. PubMed ID: 33211736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimating Reward Function from Medial Prefrontal Cortex Cortical Activity using Inverse Reinforcement Learning.
    Tan J; Shen X; Zhang X; Song Z; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3346-3349. PubMed ID: 36086257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reinforcement Learning-based Kalman Filter for Adaptive Brain Control in Brain-Machine Interface
    Zhang X; Song Z; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6619-6622. PubMed ID: 34892625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distributed deep reinforcement learning based on bi-objective framework for multi-robot formation.
    Li J; Liu Q; Chi G
    Neural Netw; 2024 Mar; 171():61-72. PubMed ID: 38091765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins N; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4108-11. PubMed ID: 23366831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coadaptive brain-machine interface via reinforcement learning.
    DiGiovanna J; Mahmoudi B; Fortes J; Principe JC; Sanchez JC
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):54-64. PubMed ID: 19224719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Social Robot Navigation Tasks: Combining Machine Learning Techniques and Social Force Model.
    Gil Ă“; Garrell A; Sanfeliu A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Operant conditioning of rat navigation using electrical stimulation for directional cues and rewards.
    Lee MG; Jun G; Choi HS; Jang HS; Bae YC; Suk K; Jang IS; Choi BJ
    Behav Processes; 2010 Jul; 84(3):715-20. PubMed ID: 20417259
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Asymmetric and adaptive reward coding via normalized reinforcement learning.
    Louie K
    PLoS Comput Biol; 2022 Jul; 18(7):e1010350. PubMed ID: 35862443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transformable Gaussian Reward Function for Socially Aware Navigation Using Deep Reinforcement Learning.
    Kim J; Kang S; Yang S; Kim B; Yura J; Kim D
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellular Nonlinear Networks for the emergence of perceptual states: application to robot navigation control.
    Arena P; De Fiore S; Patané L
    Neural Netw; 2009; 22(5-6):801-11. PubMed ID: 19596552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning.
    Zhou X; Bai T; Gao Y; Han Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel turning behavior control method for rat-robot through the stimulation of ventral posteromedial thalamic nucleus.
    Xu K; Zhang J; Zhou H; Lee JC; Zheng X
    Behav Brain Res; 2016 Feb; 298(Pt B):150-7. PubMed ID: 26546880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.