BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24111398)

  • 1. Modelling the generation of the cochlear microphonic.
    Ayat M; Teal PD
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7168-71. PubMed ID: 24111398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cochlear microphonic evidence for mechanical propagation of distortion products (f2 - f1) and (2f1 - f2).
    Gibian GL; Kim DO
    Hear Res; 1982 Jan; 6(1):35-59. PubMed ID: 7054135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cochlear microphonic potential does not reflect the passive basilar membrane traveling wave.
    Perez R; Freeman S; Sichel JY; Sohmer H
    J Basic Clin Physiol Pharmacol; 2007; 18(3):159-72. PubMed ID: 17970565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microphonic potentials recorded from the ear canal in man evoked by Gaussian-shaped sound pressure impulses.
    Oelmann J
    Scand Audiol Suppl; 1979 Mar; 11():59-64. PubMed ID: 299189
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of modulation of basilar membrane position on the cochlear microphonic.
    Pierson M; Møller A
    Hear Res; 1980 Mar; 2(2):151-62. PubMed ID: 7364670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The group delay and suppression pattern of the cochlear microphonic potential recorded at the round window.
    He W; Porsov E; Kemp D; Nuttall AL; Ren T
    PLoS One; 2012; 7(3):e34356. PubMed ID: 22470560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cochlear delays and traveling waves: comments on 'Experimental look at cochlear mechanics'.
    Ruggero MA
    Audiology; 1994; 33(3):131-42. PubMed ID: 8042934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wiener kernels of chinchilla auditory-nerve fibers: verification using responses to tones, clicks, and noise and comparison with basilar-membrane vibrations.
    Temchin AN; Recio-Spinoso A; van Dijk P; Ruggero MA
    J Neurophysiol; 2005 Jun; 93(6):3635-48. PubMed ID: 15659530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cochlear amplifier and Ca2+ current-driven active stereocilia motion.
    Ren T
    Nat Neurosci; 2005 Feb; 8(2):132-4. PubMed ID: 15682184
    [No Abstract]   [Full Text] [Related]  

  • 11. Estimating mechanical responses to pulsatile electrical stimulation of the cochlea.
    McAnally KI; Brown M; Clark GM
    Hear Res; 1997 Apr; 106(1-2):146-53. PubMed ID: 9112114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of basilar membrane vibrations and evaluation of the cochlear condition.
    Khanna SM; Leonard DG
    Hear Res; 1986; 23(1):37-53. PubMed ID: 3733551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using a concha electrode to measure response patterns based on the amplitudes of cochlear microphonic waveforms across acoustic frequencies in normal-hearing subjects.
    Zhang M
    Ear Hear; 2015 Jan; 36(1):53-60. PubMed ID: 25083598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basilar-membrane motion in the alligator lizard: its relation to tonotopic organization and frequency selectivity.
    Peake WT; Ling A
    J Acoust Soc Am; 1980 May; 67(5):1736-45. PubMed ID: 7372928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the cochlear microphonic on the limiting frequency of the mammalian ear.
    Iwasa KH; Sul B
    J Acoust Soc Am; 2008 Sep; 124(3):1607-12. PubMed ID: 19045652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity of cochlear microphonics at high sound pressure levels as an important clinical aspect.
    Teschner M; Lenarz T; Battmer RD
    ORL J Otorhinolaryngol Relat Spec; 2012; 74(1):38-41. PubMed ID: 22286860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of current stimulus on in vivo cochlear mechanics.
    Parthasarathi AA; Grosh K; Zheng J; Nuttall AL
    J Acoust Soc Am; 2003 Jan; 113(1):442-52. PubMed ID: 12558281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-feedback measurements of turtle basilar membrane motion using direct reflection.
    O'Neill MP; Bearden A
    Hear Res; 1995 Apr; 84(1-2):125-38. PubMed ID: 7642446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origin of tuning in turtle cochlear hair cells.
    Fettiplace R; Crawford AC
    Hear Res; 1980 Jun; 2(3-4):447-54. PubMed ID: 7410249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compound action potential and cochlear microphonic extracted from electrocochleographic responses to condensation or rarefaction clicks.
    Arslan E; Santarelli R; Sparacino G; Sella G
    Acta Otolaryngol; 2000 Mar; 120(2):192-6. PubMed ID: 11603770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.