These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24111398)

  • 21. Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma.
    Patuzzi RB; Yates GK; Johnstone BM
    Hear Res; 1989 May; 39(1-2):189-202. PubMed ID: 2737965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cochlear microphonic enhancement in two tone interactions.
    Nuttall AL; Dolan DF
    Hear Res; 1991 Feb; 51(2):235-45. PubMed ID: 2032959
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells.
    Russell IJ; Sellick PM
    J Physiol; 1983 May; 338():179-206. PubMed ID: 6875955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wever and Lawrence revisited: effects of nulling basilar membrane movement on concomitant whole-nerve action potential.
    Offut G
    J Aud Res; 1986 Jan; 26(1):43-54. PubMed ID: 3610990
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterizing non-linearity in the cochlear microphonic using the instantaneous frequency.
    Chertoff ME; Lerner D; Amani-Taleshi D; Nagai Y
    Hear Res; 2000 Jul; 145(1-2):190-202. PubMed ID: 10867292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CM tuning can be compatible with sharply tuned receptor potentials.
    Kletsky EJ; Zwislocki JJ
    Hear Res; 1980 Jun; 2(3-4):549-57. PubMed ID: 7410260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cochlear tuning properties: concurrent basilar membrane and single nerve fiber measurements.
    Evans EF; Wilson JP
    Science; 1975 Dec; 190(4220):1218-21. PubMed ID: 1198110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The responses of inner hair cells to basilar membrane velocity during low frequency auditory stimulation in the guinea pig cochlea.
    Sellick PM; Russell IJ
    Hear Res; 1980 Jun; 2(3-4):439-45. PubMed ID: 7410248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Finite element modelling of cochlear electrical coupling.
    Teal PD; Ni G
    J Acoust Soc Am; 2016 Oct; 140(4):2769. PubMed ID: 27794298
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The source along the basilar membrane of the cochlear microphonic potential recorded by surface electrodes in man.
    Sohmer H; Kinarti R; Gafni M
    Electroencephalogr Clin Neurophysiol; 1980 Sep; 49(5-6):506-14. PubMed ID: 6158432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Remotely recorded cochlear microphonic in the cat.
    Laukli E; Mair IW
    Arch Otorhinolaryngol; 1983; 238(1):17-26. PubMed ID: 6882278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stimulation of efferents alters the cochlear microphonic and the sound-induced resistance changes measured in scale media of the guinea pig.
    Mountain DC; Geisler CD; Hubbard AE
    Hear Res; 1980 Oct; 3(3):231-40. PubMed ID: 7440426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of cochlear tuning by low-frequency sound.
    Klis JF; Prijs VF; Latour JB; Smoorenburg GF
    Hear Res; 1988 Nov; 36(2-3):163-73. PubMed ID: 3209489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of cochlear mechanics.
    Zwislocki JJ
    Hear Res; 1986; 22():155-69. PubMed ID: 3733537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stiffness of the gerbil basilar membrane: radial and longitudinal variations.
    Emadi G; Richter CP; Dallos P
    J Neurophysiol; 2004 Jan; 91(1):474-88. PubMed ID: 14523077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationship between basilar membrane tuning and hair cell condition.
    Khanna SM; Leonard DG
    Hear Res; 1986; 23(1):55-70. PubMed ID: 3733552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-frequency sensitivity in a gerbilline rodent, Pachyuromys duprasi.
    Plassmann W; Kadel M
    Brain Behav Evol; 1991; 38(2-3):115-26. PubMed ID: 1742598
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cochlear microphonic responses of the peripheral auditory system to frequency-varying signals.
    Shore SE; Cullen JK
    Am J Otolaryngol; 1984; 5(1):34-42. PubMed ID: 6534192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectral Ripples in Round-Window Cochlear Microphonics: Evidence for Multiple Generation Mechanisms.
    Charaziak KK; Siegel JH; Shera CA
    J Assoc Res Otolaryngol; 2018 Aug; 19(4):401-419. PubMed ID: 30014309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Further studies on the mechanics of the cochlear partition in the mustached bat. II. A second cochlear frequency map derived from acoustic distortion products.
    Kössl M; Vater M
    Hear Res; 1996 May; 94(1-2):78-86. PubMed ID: 8789813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.