These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24111459)

  • 1. Hybrid SSVEP-motion visual stimulus based BCI system for intelligent wheelchair.
    Punsawad Y; Wongsawat Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7416-9. PubMed ID: 24111459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control.
    Cao L; Li J; Ji H; Jiang C
    J Neurosci Methods; 2014 May; 229():33-43. PubMed ID: 24713576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Electric Wheelchair Manipulating System Using SSVEP-Based BCI System.
    Chen W; Chen SK; Liu YH; Chen YJ; Chen CS
    Biosensors (Basel); 2022 Sep; 12(10):. PubMed ID: 36290910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mental fatigue in central-field and peripheral-field steady-state visually evoked potential and its effects on event-related potential responses.
    Lee MH; Williamson J; Lee YE; Lee SW
    Neuroreport; 2018 Oct; 29(15):1301-1308. PubMed ID: 30102642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation.
    Punsawad Y; Wongsawat Y
    Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attention-level transitory response: a novel hybrid BCI approach.
    Diez PF; Garcés Correa A; Orosco L; Laciar E; Mut V
    J Neural Eng; 2015 Oct; 12(5):056007. PubMed ID: 26268353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new hybrid BCI paradigm based on P300 and SSVEP.
    Wang M; Daly I; Allison BZ; Jin J; Zhang Y; Chen L; Wang X
    J Neurosci Methods; 2015 Apr; 244():16-25. PubMed ID: 24997343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion visual stimulus for SSVEP-based BCI system.
    Punsawad Y; Wongsawat Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3837-40. PubMed ID: 23366765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface.
    Diez PF; Torres Müller SM; Mut VA; Laciar E; Avila E; Bastos-Filho TF; Sarcinelli-Filho M
    Med Eng Phys; 2013 Aug; 35(8):1155-64. PubMed ID: 23339894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady-State Visual Evoked Potential-Based Brain-Computer Interface Using a Novel Visual Stimulus with Quick Response (QR) Code Pattern.
    Siribunyaphat N; Punsawad Y
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An online hybrid BCI system based on SSVEP and EMG.
    Lin K; Cinetto A; Wang Y; Chen X; Gao S; Gao X
    J Neural Eng; 2016 Apr; 13(2):026020. PubMed ID: 26902294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alpha neurofeedback training improves SSVEP-based BCI performance.
    Wan F; da Cruz JN; Nan W; Wong CM; Vai MI; Rosa A
    J Neural Eng; 2016 Jun; 13(3):036019. PubMed ID: 27152666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control.
    Li Y; Pan J; Wang F; Yu Z
    IEEE Trans Biomed Eng; 2013 Nov; 60(11):3156-66. PubMed ID: 23799679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of SSVEP-based BCI performance by the resting-state EEG network.
    Zhang Y; Xu P; Guo D; Yao D
    J Neural Eng; 2013 Dec; 10(6):066017. PubMed ID: 24280591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of higher frequency on the classification of steady-state visual evoked potentials.
    Won DO; Hwang HJ; Dähne S; Müller KR; Lee SW
    J Neural Eng; 2016 Feb; 13(1):016014. PubMed ID: 26695712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A BCI painting system using a hybrid control approach based on SSVEP and P300.
    Tang Z; Wang X; Wu J; Ping Y; Guo X; Cui Z
    Comput Biol Med; 2022 Nov; 150():106118. PubMed ID: 36166987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.