BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24111488)

  • 41. High dynamic range detection of Chlamydia trachomatis growth by direct quantitative PCR of the infected cells.
    Eszik I; Lantos I; Önder K; Somogyvári F; Burián K; Endrész V; Virok DP
    J Microbiol Methods; 2016 Jan; 120():15-22. PubMed ID: 26578244
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chlamydia trachomatis--clinical significance and strategies of intervention.
    Weström LV
    Semin Dermatol; 1990 Jun; 9(2):117-25. PubMed ID: 2202407
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In-vitro anti-chlamydial activities of free and liposomal tetracycline and doxycycline.
    Sangare L; Morisset R; Ravaoarinoro M
    J Med Microbiol; 1999 Jul; 48(7):689-693. PubMed ID: 10403420
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differential sensitivity of distinct Chlamydia trachomatis isolates to IFN-gamma-mediated inhibition.
    Perry LL; Su H; Feilzer K; Messer R; Hughes S; Whitmire W; Caldwell HD
    J Immunol; 1999 Mar; 162(6):3541-8. PubMed ID: 10092812
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chlamydia trachomatis regulates innate immune barrier integrity and mediates cytokine and antimicrobial responses in human uterine ECC-1 epithelial cells.
    Mukura LR; Hickey DK; Rodriguez-Garcia M; Fahey JV; Wira CR
    Am J Reprod Immunol; 2017 Dec; 78(6):. PubMed ID: 28921726
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of a strong and specific antichlamydial N-acylhydrazone.
    Zhang H; Kunadia A; Lin Y; Fondell JD; Seidel D; Fan H
    PLoS One; 2017; 12(10):e0185783. PubMed ID: 28973037
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Complement C3 opsonization of Chlamydia trachomatis facilitates uptake in human monocytes.
    Lausen M; Christiansen G; Karred N; Winther R; Poulsen TBG; Palarasah Y; Birkelund S
    Microbes Infect; 2018; 20(6):328-336. PubMed ID: 29729435
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gene knockout B cell-deficient mice demonstrate that B cells play an important role in the initiation of T cell responses to Chlamydia trachomatis (mouse pneumonitis) lung infection.
    Yang X; Brunham RC
    J Immunol; 1998 Aug; 161(3):1439-46. PubMed ID: 9686609
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro.
    Suchland RJ; Sandoz KM; Jeffrey BM; Stamm WE; Rockey DD
    Antimicrob Agents Chemother; 2009 Nov; 53(11):4604-11. PubMed ID: 19687238
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Activities of rifamycin derivatives against wild-type and rpoB mutants of Chlamydia trachomatis.
    Xia M; Suchland RJ; Carswell JA; Van Duzer J; Buxton DK; Brown K; Rothstein DM; Stamm WE
    Antimicrob Agents Chemother; 2005 Sep; 49(9):3974-6. PubMed ID: 16127086
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A mathematical model for the investigation of the Th1 immune response to Chlamydia trachomatis.
    Wilson DP; Timms P; McElwain DL
    Math Biosci; 2003 Mar; 182(1):27-44. PubMed ID: 12547038
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CtHtrA: the lynchpin of the chlamydial surface and a promising therapeutic target.
    Marsh JW; Ong VA; Lott WB; Timms P; Tyndall JD; Huston WM
    Future Microbiol; 2017 Jul; 12():817-829. PubMed ID: 28593794
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Antibiotic resistance in Chlamydiae.
    Sandoz KM; Rockey DD
    Future Microbiol; 2010 Sep; 5(9):1427-42. PubMed ID: 20860486
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chlamydia cell biology and pathogenesis.
    Elwell C; Mirrashidi K; Engel J
    Nat Rev Microbiol; 2016 Jun; 14(6):385-400. PubMed ID: 27108705
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Commercially available fluorescein-conjugated monoclonal antibody for determining the in vitro activity of antimicrobial agents against Chlamydia trachomatis.
    Webberley JM; Matthews RS; Andrews JM; Wise R
    Eur J Clin Microbiol; 1987 Oct; 6(5):587-9. PubMed ID: 2449348
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mini Review: Antimicrobial Control of Chlamydial Infections in Animals: Current Practices and Issues.
    Bommana S; Polkinghorne A
    Front Microbiol; 2019; 10():113. PubMed ID: 30778341
    [No Abstract]   [Full Text] [Related]  

  • 57. Chromosomal Recombination Targets in
    Suchland RJ; Carrell SJ; Wang Y; Hybiske K; Kim DB; Dimond ZE; Hefty PS; Rockey DD
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31501285
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression and Function of Host Defense Peptides at Inflammation Sites.
    Prasad SV; Fiedoruk K; Daniluk T; Piktel E; Bucki R
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31877866
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of the in vitro activities of ofloxacin and tetracycline against Chlamydia trachomatis as assessed by indirect immunofluorescence.
    Bailey JM; Heppleston C; Richmond SJ
    Antimicrob Agents Chemother; 1984 Jul; 26(1):13-6. PubMed ID: 6383207
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tetracycline-resistant Chlamydia suis in cases of reproductive failure on Belgian, Cypriote and Israeli pig production farms.
    Schautteet K; De Clercq E; Miry C; Van Groenweghe F; Delava P; Kalmar I; Vanrompay D
    J Med Microbiol; 2013 Feb; 62(Pt 2):331-334. PubMed ID: 23105027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.