These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24111580)

  • 21. Sculpting Extreme Electromagnetic Field Enhancement in Free Space for Molecule Sensing.
    Liu F; Song B; Su G; Liang O; Zhan P; Wang H; Wu W; Xie Y; Wang Z
    Small; 2018 Jul; ():e1801146. PubMed ID: 30003669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Whispering-gallery mode resonators: Surface enhanced Raman scattering without plasmons.
    Ausman LK; Schatz GC
    J Chem Phys; 2008 Aug; 129(5):054704. PubMed ID: 18698918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrated Nanogap Platform for Sub-Volt Dielectrophoretic Trapping and Real-Time Raman Imaging of Biological Nanoparticles.
    Ertsgaard CT; Wittenberg NJ; Klemme DJ; Barik A; Shih WC; Oh SH
    Nano Lett; 2018 Sep; 18(9):5946-5953. PubMed ID: 30071732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes.
    Barik A; Chen X; Oh SH
    Nano Lett; 2016 Oct; 16(10):6317-6324. PubMed ID: 27602796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large-area nanogap plasmon resonator arrays for plasmonics applications.
    Jin M; van Wolferen H; Wormeester H; van den Berg A; Carlen ET
    Nanoscale; 2012 Aug; 4(15):4712-8. PubMed ID: 22743701
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors.
    Lee Y; Lee J; Lee TK; Park J; Ha M; Kwak SK; Ko H
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26421-9. PubMed ID: 26575302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupling of gap plasmons in multi-wire waveguides.
    Manjavacas A; García de Abajo FJ
    Opt Express; 2009 Oct; 17(22):19401-13. PubMed ID: 19997160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Critical coupling and extreme confinement in nanogap antennas.
    Emeric L; Deeb C; Pardo F; Pelouard JL
    Opt Lett; 2019 Oct; 44(19):4761-4764. PubMed ID: 31568436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis, Optical Properties, and Multiplexed Raman Bio-Imaging of Surface Roughness-Controlled Nanobridged Nanogap Particles.
    Lee JH; Oh JW; Nam SH; Cha YS; Kim GH; Rhim WK; Kim NH; Kim J; Han SW; Suh YD; Nam JM
    Small; 2016 Sep; 12(34):4726-34. PubMed ID: 27028989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering.
    Cao YQ; Qin K; Zhu L; Qian X; Zhang XJ; Wu D; Li AD
    Sci Rep; 2017 Jul; 7(1):5161. PubMed ID: 28701788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light scattering by a nanoparticle and a dipole placed near a dielectric surface covered by a thin metallic film.
    Geshev PI; Fischer UC; Fuchs H
    Opt Express; 2007 Oct; 15(21):13796-804. PubMed ID: 19550650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanically tunable sub-10 nm metal gap by stretching PDMS substrate.
    Liu W; Shen Y; Xiao G; She X; Wang J; Jin C
    Nanotechnology; 2017 Jan; 28(7):075301. PubMed ID: 28074781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface enhanced Raman scattering substrate with metallic nanogap array fabricated by etching the assembled polystyrene spheres array.
    Xia L; Yang Z; Yin S; Guo W; Li S; Xie W; Huang D; Deng Q; Shi H; Cui H; Du C
    Opt Express; 2013 May; 21(9):11349-55. PubMed ID: 23669991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays.
    Huang Y; Zhang X; Ringe E; Hou M; Ma L; Zhang Z
    Sci Rep; 2016 Mar; 6():23159. PubMed ID: 26983501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Directional emission of nanoscale chiral sources modified by gap plasmons.
    Lin H; Wen T; Tang J; Ye L; Zhang G; Zhang W; Gu Y; Gong Q; Lu G
    Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36893457
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications.
    Cao W; Jiang L; Hu J; Wang A; Li X; Lu Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1297-1305. PubMed ID: 29256245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas.
    Zenin VA; Andryieuski A; Malureanu R; Radko IP; Volkov VS; Gramotnev DK; Lavrinenko AV; Bozhevolnyi SI
    Nano Lett; 2015 Dec; 15(12):8148-54. PubMed ID: 26551324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High Aspect-Ratio Iridium-Coated Nanopillars for Highly Reproducible Surface-Enhanced Raman Scattering (SERS).
    Kang G; Matikainen A; Stenberg P; Färm E; Li P; Ritala M; Vahimaa P; Honkanen S; Tan X
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11452-9. PubMed ID: 25961706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules.
    Regmi R; Berthelot J; Winkler PM; Mivelle M; Proust J; Bedu F; Ozerov I; Begou T; Lumeau J; Rigneault H; García-Parajó MF; Bidault S; Wenger J; Bonod N
    Nano Lett; 2016 Aug; 16(8):5143-51. PubMed ID: 27399057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical properties of nanohole arrays in metal-dielectric double films prepared by mask-on-metal colloidal lithography.
    Junesch J; Sannomiya T; Dahlin AB
    ACS Nano; 2012 Nov; 6(11):10405-15. PubMed ID: 23098107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.