These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
840 related articles for article (PubMed ID: 24111737)
1. Caramel popcorn shaped silicon particle with carbon coating as a high performance anode material for Li-ion batteries. He M; Sa Q; Liu G; Wang Y ACS Appl Mater Interfaces; 2013 Nov; 5(21):11152-8. PubMed ID: 24111737 [TBL] [Abstract][Full Text] [Related]
2. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. Lu Z; Liu N; Lee HW; Zhao J; Li W; Li Y; Cui Y ACS Nano; 2015 Mar; 9(3):2540-7. PubMed ID: 25738223 [TBL] [Abstract][Full Text] [Related]
3. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes. Wang J; Meng X; Fan X; Zhang W; Zhang H; Wang C ACS Nano; 2015 Jun; 9(6):6576-86. PubMed ID: 26014439 [TBL] [Abstract][Full Text] [Related]
4. Insight into the Formation and Stability of Solid Electrolyte Interphase for Nanostructured Silicon-Based Anode Electrodes Used in Li-Ion Batteries. Ezzedine M; Zamfir MR; Jardali F; Leveau L; Caristan E; Ersen O; Cojocaru CS; Florea I ACS Appl Mater Interfaces; 2021 Jun; 13(21):24734-24746. PubMed ID: 34019366 [TBL] [Abstract][Full Text] [Related]
5. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. Cui LF; Hu L; Choi JW; Cui Y ACS Nano; 2010 Jul; 4(7):3671-8. PubMed ID: 20518567 [TBL] [Abstract][Full Text] [Related]
6. Core-Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries. Zhou J; Qian T; Wang M; Xu N; Zhang Q; Li Q; Yan C ACS Appl Mater Interfaces; 2016 Mar; 8(8):5358-65. PubMed ID: 26863089 [TBL] [Abstract][Full Text] [Related]
7. Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries. Chen Y; Zeng S; Qian J; Wang Y; Cao Y; Yang H; Ai X ACS Appl Mater Interfaces; 2014 Mar; 6(5):3508-12. PubMed ID: 24467155 [TBL] [Abstract][Full Text] [Related]
8. Enabling Long-Cycling Life of Si-on-Graphite Composite Anodes via Fabrication of a Multifunctional Polymeric Artificial Solid-Electrolyte Interphase Protective Layer. Abdollahifar M; Vinograd A; Lu CY; Chang SJ; Müller J; Frankenstein L; Placke T; Kwade A; Winter M; Chao CY; Wu NL ACS Appl Mater Interfaces; 2022 Aug; 14(34):38824-38834. PubMed ID: 35982536 [TBL] [Abstract][Full Text] [Related]
9. Failure mechanisms of nano-silicon anodes upon cycling: an electrode porosity evolution model. Radvanyi E; Porcher W; De Vito E; Montani A; Franger S; Jouanneau Si Larbi S Phys Chem Chem Phys; 2014 Aug; 16(32):17142-53. PubMed ID: 25010355 [TBL] [Abstract][Full Text] [Related]
11. Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon Nanofibers as Anodes for Solid-State Lithium-Ion Batteries. Pandey GP; Klankowski SA; Li Y; Sun XS; Wu J; Rojeski RA; Li J ACS Appl Mater Interfaces; 2015 Sep; 7(37):20909-18. PubMed ID: 26325385 [TBL] [Abstract][Full Text] [Related]
12. Chamber-confined silicon-carbon nanofiber composites for prolonged cycling life of Li-ion batteries. Fu K; Lu Y; Dirican M; Chen C; Yanilmaz M; Shi Q; Bradford PD; Zhang X Nanoscale; 2014 Jul; 6(13):7489-95. PubMed ID: 24882561 [TBL] [Abstract][Full Text] [Related]
13. Si nanoparticles encapsulated in elastic hollow carbon fibres for Li-ion battery anodes with high structural stability. Fang S; Shen L; Tong Z; Zheng H; Zhang F; Zhang X Nanoscale; 2015 Apr; 7(16):7409-14. PubMed ID: 25826238 [TBL] [Abstract][Full Text] [Related]
14. Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries. Yao Y; Huo K; Hu L; Liu N; Cha JJ; McDowell MT; Chu PK; Cui Y ACS Nano; 2011 Oct; 5(10):8346-51. PubMed ID: 21974912 [TBL] [Abstract][Full Text] [Related]
15. Nanospherical solid electrolyte interface layer formation in binder-free carbon nanotube aerogel/Si nanohybrids to provide lithium-ion battery anodes with a long-cycle life and high capacity. Shim HC; Kim I; Woo CS; Lee HJ; Hyun S Nanoscale; 2017 Apr; 9(14):4713-4720. PubMed ID: 28327775 [TBL] [Abstract][Full Text] [Related]
16. Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Ashuri M; He Q; Shaw LL Nanoscale; 2016 Jan; 8(1):74-103. PubMed ID: 26612324 [TBL] [Abstract][Full Text] [Related]
17. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries. Zhang Z; Wang Y; Tan Q; Li D; Chen Y; Zhong Z; Su F Nanoscale; 2014 Jan; 6(1):371-7. PubMed ID: 24201898 [TBL] [Abstract][Full Text] [Related]
18. Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes. Liu J; Li N; Goodman MD; Zhang HG; Epstein ES; Huang B; Pan Z; Kim J; Choi JH; Huang X; Liu J; Hsia KJ; Dillon SJ; Braun PV ACS Nano; 2015 Feb; 9(2):1985-94. PubMed ID: 25639798 [TBL] [Abstract][Full Text] [Related]
19. Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries. Jia H; Stock C; Kloepsch R; He X; Badillo JP; Fromm O; Vortmann B; Winter M; Placke T ACS Appl Mater Interfaces; 2015 Jan; 7(3):1508-15. PubMed ID: 25574763 [TBL] [Abstract][Full Text] [Related]
20. High capacity, stable silicon/carbon anodes for lithium-ion batteries prepared using emulsion-templated directed assembly. Chen Y; Nie M; Lucht BL; Saha A; Guduru PR; Bose A ACS Appl Mater Interfaces; 2014 Apr; 6(7):4678-83. PubMed ID: 24640970 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]