BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24111825)

  • 1. Regulation of protein tyrosine phosphatase oxidation in cell adhesion and migration.
    Frijhoff J; Dagnell M; Godfrey R; Ostman A
    Antioxid Redox Signal; 2014 May; 20(13):1994-2010. PubMed ID: 24111825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation.
    Denu JM; Tanner KG
    Biochemistry; 1998 Apr; 37(16):5633-42. PubMed ID: 9548949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferential oxidation of the second phosphatase domain of receptor-like PTP-alpha revealed by an antibody against oxidized protein tyrosine phosphatases.
    Persson C; Sjöblom T; Groen A; Kappert K; Engström U; Hellman U; Heldin CH; den Hertog J; Ostman A
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):1886-91. PubMed ID: 14762163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of protein tyrosine phosphatases by reversible oxidation.
    Ostman A; Frijhoff J; Sandin A; Böhmer FD
    J Biochem; 2011 Oct; 150(4):345-56. PubMed ID: 21856739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive oxygen species as mediators of cell adhesion.
    Chiarugi P
    Ital J Biochem; 2003 Mar; 52(1):28-32. PubMed ID: 12833635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The KIM-family protein-tyrosine phosphatases use distinct reversible oxidation intermediates: Intramolecular or intermolecular disulfide bond formation.
    Machado LESF; Shen TL; Page R; Peti W
    J Biol Chem; 2017 May; 292(21):8786-8796. PubMed ID: 28389559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidants relieve phosphatase inhibition and reduce PDGF signaling in cultured VSMCs and in restenosis.
    Kappert K; Sparwel J; Sandin A; Seiler A; Siebolts U; Leppänen O; Rosenkranz S; Ostman A
    Arterioscler Thromb Vasc Biol; 2006 Dec; 26(12):2644-51. PubMed ID: 16990553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An antibody-based method for monitoring in vivo oxidation of protein tyrosine phosphatases.
    Persson C; Kappert K; Engström U; Ostman A; Sjöblom T
    Methods; 2005 Jan; 35(1):37-43. PubMed ID: 15588984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein tyrosine phosphorylation and protein tyrosine nitration in redox signaling.
    Monteiro HP; Arai RJ; Travassos LR
    Antioxid Redox Signal; 2008 May; 10(5):843-89. PubMed ID: 18220476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia followed by re-oxygenation induces oxidation of tyrosine phosphatases.
    Sandin A; Dagnell M; Gonon A; Pernow J; Stangl V; Aspenström P; Kappert K; Ostman A
    Cell Signal; 2011 May; 23(5):820-6. PubMed ID: 21241797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues.
    Cook NL; Moeke CH; Fantoni LI; Pattison DI; Davies MJ
    Free Radic Biol Med; 2016 Jan; 90():195-205. PubMed ID: 26616646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 12/15-lipoxygenase-derived lipid peroxides control receptor tyrosine kinase signaling through oxidation of protein tyrosine phosphatases.
    Conrad M; Sandin A; Förster H; Seiler A; Frijhoff J; Dagnell M; Bornkamm GW; Rådmark O; Hooft van Huijsduijnen R; Aspenström P; Böhmer F; Ostman A
    Proc Natl Acad Sci U S A; 2010 Sep; 107(36):15774-9. PubMed ID: 20798033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-tyrosine phosphatases: structure, mechanism, and inhibitor discovery.
    Burke TR; Zhang ZY
    Biopolymers; 1998; 47(3):225-41. PubMed ID: 9817026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B.
    Meng TC; Buckley DA; Galic S; Tiganis T; Tonks NK
    J Biol Chem; 2004 Sep; 279(36):37716-25. PubMed ID: 15192089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S-glutathionylation of LMW-PTP regulates VEGF-mediated FAK activation and endothelial cell migration.
    Abdelsaid MA; El-Remessy AB
    J Cell Sci; 2012 Oct; 125(Pt 20):4751-60. PubMed ID: 22854047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a modified in-gel assay to identify protein tyrosine phosphatases that are oxidized and inactivated in vivo.
    Meng TC; Hsu SF; Tonks NK
    Methods; 2005 Jan; 35(1):28-36. PubMed ID: 15588983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation sensitivity of the catalytic cysteine of the protein-tyrosine phosphatases SHP-1 and SHP-2.
    Weibrecht I; Böhmer SA; Dagnell M; Kappert K; Ostman A; Böhmer FD
    Free Radic Biol Med; 2007 Jul; 43(1):100-10. PubMed ID: 17561098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic approaches to studying protein tyrosine phosphatases.
    Liang F; Kumar S; Zhang ZY
    Mol Biosyst; 2007 May; 3(5):308-16. PubMed ID: 17460790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox redux: revisiting PTPs and the control of cell signaling.
    Tonks NK
    Cell; 2005 Jun; 121(5):667-70. PubMed ID: 15935753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating redox regulation of protein tyrosine phosphatases using low pH thiol labeling and enrichment strategies coupled to MALDI-TOF mass spectrometry.
    Bonham CA; Steevensz AJ; Geng Q; Vacratsis PO
    Methods; 2014 Jan; 65(2):190-200. PubMed ID: 23978514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.