BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 24112627)

  • 1. A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds.
    Gupta VK; Atar N; Yola ML; Üstündağ Z; Uzun L
    Water Res; 2014 Jan; 48():210-7. PubMed ID: 24112627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst.
    Chang YC; Chen DH
    J Hazard Mater; 2009 Jun; 165(1-3):664-9. PubMed ID: 19022566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ loading of well-dispersed gold nanoparticles on two-dimensional graphene oxide/SiO2 composite nanosheets and their catalytic properties.
    Zhu C; Han L; Hu P; Dong S
    Nanoscale; 2012 Mar; 4(5):1641-6. PubMed ID: 22286065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing catalytic performance of Au catalysts by noncovalent functionalized graphene using functional ionic liquids.
    Li S; Guo S; Yang H; Gou G; Ren R; Li J; Dong Z; Jin J; Ma J
    J Hazard Mater; 2014 Apr; 270():11-7. PubMed ID: 24531368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Au nanoparticles decorated graphene oxide nanosheets: noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol.
    Lu W; Ning R; Qin X; Zhang Y; Chang G; Liu S; Luo Y; Sun X
    J Hazard Mater; 2011 Dec; 197():320-6. PubMed ID: 22019107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene oxide supported Au-Ag alloy nanoparticles with different shapes and their high catalytic activities.
    Wu T; Ma J; Wang X; Liu Y; Xu H; Gao J; Wang W; Liu Y; Yan J
    Nanotechnology; 2013 Mar; 24(12):125301. PubMed ID: 23459126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ preparation, characterization, magnetic and catalytic studies of surfactant free RGO/Fe(x)Co(100-x) nanocomposites.
    Chen F; Xi P; Ma C; Shao C; Wang J; Wang S; Liu G; Zeng Z
    Dalton Trans; 2013 Jun; 42(22):7936-42. PubMed ID: 23403735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ growth of Ni(x)Co(100-x) nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties.
    Bai S; Shen X; Zhu G; Li M; Xi H; Chen K
    ACS Appl Mater Interfaces; 2012 May; 4(5):2378-86. PubMed ID: 22486337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of Pd and Au as nanoparticles by a marine bacterium Bacillus sp. GP and their enhanced catalytic performance using metal oxides for 4-nitrophenol reduction.
    Zhang H; Hu X
    Enzyme Microb Technol; 2018 Jun; 113():59-66. PubMed ID: 29602388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A magnetic double-shell microsphere as a highly efficient reusable catalyst for catalytic applications.
    Hu W; Liu B; Wang Q; Liu Y; Liu Y; Jing P; Yu S; Liu L; Zhang J
    Chem Commun (Camb); 2013 Sep; 49(69):7596-8. PubMed ID: 23875186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction.
    Saha S; Pal A; Kundu S; Basu S; Pal T
    Langmuir; 2010 Feb; 26(4):2885-93. PubMed ID: 19957940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of interfacially electronic structures of gold-magnetite heterostructures using X-ray absorption spectroscopy.
    Lin FH; Doong RA
    J Colloid Interface Sci; 2014 Mar; 417():325-32. PubMed ID: 24407694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Cr(vi) removal using iron nanoparticle decorated graphene.
    Jabeen H; Chandra V; Jung S; Lee JW; Kim KS; Kim SB
    Nanoscale; 2011 Sep; 3(9):3583-5. PubMed ID: 21814702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ag dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity.
    Huang J; Vongehr S; Tang S; Lu H; Shen J; Meng X
    Langmuir; 2009 Oct; 25(19):11890-6. PubMed ID: 19788231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and catalytic activity of FeNi@Ni nanocables for the reduction of p-nitrophenol.
    Zhou L; Wen M; Wu Q; Wu D
    Dalton Trans; 2014 Jun; 43(21):7924-9. PubMed ID: 24714959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C
    Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes.
    Nasrollahzadeh M; Sajadi SM; Rostami-Vartooni A; Alizadeh M; Bagherzadeh M
    J Colloid Interface Sci; 2016 Mar; 466():360-8. PubMed ID: 26752431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction.
    Chiou JR; Lai BH; Hsu KC; Chen DH
    J Hazard Mater; 2013 Mar; 248-249():394-400. PubMed ID: 23416483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity.
    Sen IK; Maity K; Islam SS
    Carbohydr Polym; 2013 Jan; 91(2):518-28. PubMed ID: 23121940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol.
    Narayanan KB; Sakthivel N
    J Hazard Mater; 2011 May; 189(1-2):519-25. PubMed ID: 21420237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.