These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24112781)

  • 1. Tendon extracellular matrix damage detection and quantification using automated edge detection analysis.
    Ros SJ; Andarawis-Puri N; Flatow EL
    J Biomech; 2013 Nov; 46(16):2844-7. PubMed ID: 24112781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of apoptosis exacerbates fatigue-damage tendon injuries in an in vivo rat model.
    Bell R; Robles-Harris MA; Anderson M; Laudier D; Schaffler MB; Flatow EL; Andarawis-Puri N
    Eur Cell Mater; 2018 Jul; 36():44-56. PubMed ID: 30058060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low stress tendon fatigue is a relatively rapid process in the context of overuse injuries.
    Parent G; Huppé N; Langelier E
    Ann Biomed Eng; 2011 May; 39(5):1535-45. PubMed ID: 21287276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue loading of tendon.
    Shepherd JH; Screen HR
    Int J Exp Pathol; 2013 Aug; 94(4):260-70. PubMed ID: 23837793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subrupture tendon fatigue damage.
    Fung DT; Wang VM; Laudier DM; Shine JH; Basta-Pljakic J; Jepsen KJ; Schaffler MB; Flatow EL
    J Orthop Res; 2009 Feb; 27(2):264-273. PubMed ID: 18683881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale mechanisms of tendon fatigue damage progression and severity are strain and cycle dependent.
    Ros SJ; Muljadi PM; Flatow EL; Andarawis-Puri N
    J Biomech; 2019 Mar; 85():148-156. PubMed ID: 30732906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and mechanical effects of in vivo fatigue damage induction on murine tendon.
    Sereysky JB; Andarawis-Puri N; Jepsen KJ; Flatow EL
    J Orthop Res; 2012 Jun; 30(6):965-72. PubMed ID: 22072573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative label-free analysis of the extracellular proteome of human supraspinatus tendon reveals damage to the pericellular and elastic fibre niches in torn and aged tissue.
    Hakimi O; Ternette N; Murphy R; Kessler BM; Carr A
    PLoS One; 2017; 12(5):e0177656. PubMed ID: 28542244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of overuse tendinopathy: A new descriptive model for the initiation of tendon damage during cyclic loading.
    Herod TW; Veres SP
    J Orthop Res; 2018 Jan; 36(1):467-476. PubMed ID: 28598009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histopathological findings in chronic tendon disorders.
    Järvinen M; Józsa L; Kannus P; Järvinen TL; Kvist M; Leadbetter W
    Scand J Med Sci Sports; 1997 Apr; 7(2):86-95. PubMed ID: 9211609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of acute and chronic streptozotocin-induced diabetes on the rat tendon extracellular matrix and mechanical properties.
    Volper BD; Huynh RT; Arthur KA; Noone J; Gordon BD; Zacherle EW; Munoz E; Sørensen MA; Svensson RB; Broderick TL; Magnusson SP; Howden R; Hale TM; Carroll CC
    Am J Physiol Regul Integr Comp Physiol; 2015 Nov; 309(9):R1135-43. PubMed ID: 26310937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic tendon pathology: molecular basis and therapeutic implications.
    Riley G
    Expert Rev Mol Med; 2005 Mar; 7(5):1-25. PubMed ID: 15796783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early events of overused supraspinatus tendons involve matrix metalloproteinases and EMMPRIN/CD147 in the absence of inflammation.
    Attia M; Huet E; Gossard C; Menashi S; Tassoni MC; Martelly I
    Am J Sports Med; 2013 Apr; 41(4):908-17. PubMed ID: 23404084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Col V siRNA engineered tenocytes for tendon tissue engineering.
    Lu P; Zhang GR; Song XH; Zou XH; Wang LL; Ouyang HW
    PLoS One; 2011; 6(6):e21154. PubMed ID: 21713001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating changes in tendon crimp with fatigue loading as an ex vivo structural assessment of tendon damage.
    Freedman BR; Zuskov A; Sarver JJ; Buckley MR; Soslowsky LJ
    J Orthop Res; 2015 Jun; 33(6):904-10. PubMed ID: 25773654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promoting effective tendon healing and remodeling.
    Andarawis-Puri N; Flatow EL
    J Orthop Res; 2018 Dec; 36(12):3115-3124. PubMed ID: 30175859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevalence and possible pathological significance of calcium phosphate salt accumulation in tendon matrix degeneration.
    Riley GP; Harrall RL; Constant CR; Cawston TE; Hazleman BL
    Ann Rheum Dis; 1996 Feb; 55(2):109-15. PubMed ID: 8712860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesenchymal Stromal Cells Adapt to Chronic Tendon Disease Environment with an Initial Reduction in Matrix Remodeling.
    Doll CU; Niebert S; Burk J
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroscopic 'degeneration' of equine superficial digital flexor tendon is accompanied by a change in extracellular matrix composition.
    Birch HL; Bailey AJ; Goodship AE
    Equine Vet J; 1998 Nov; 30(6):534-9. PubMed ID: 9844973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delayed exercise promotes remodeling in sub-rupture fatigue damaged tendons.
    Bell R; Boniello MR; Gendron NR; Flatow EL; Andarawis-Puri N
    J Orthop Res; 2015 Jun; 33(6):919-25. PubMed ID: 25732052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.