These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 2411296)

  • 21. Glucose uptake in porcine carotid artery: relation to alterations in active Na+-K+ transport.
    Lynch RM; Paul RJ
    Am J Physiol; 1984 Nov; 247(5 Pt 1):C433-40. PubMed ID: 6093572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. IX. The role of cellular calcium in the activation of the glucose transport system in rat soleus muscle.
    Clausen T; Elbrink J; Dahl-Hansen AB
    Biochim Biophys Acta; 1975 Jan; 375(2):292-308. PubMed ID: 1125213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity.
    Mühlbacher C; Karnieli E; Schaff P; Obermaier B; Mushack J; Rattenhuber E; Häring HU
    Biochem J; 1988 Feb; 249(3):865-70. PubMed ID: 3281656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly insulin-responsive isolated rat heart muscle cells yielded by a modified isolation method.
    Fischer Y; Rose H; Kammermeier H
    Life Sci; 1991; 49(23):1679-88. PubMed ID: 1943473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The stimulating effect of 3',5'-(cyclic)adenosine monophosphate and lipolytic hormones on 3-O-methylglucose transport and 45Ca2+ release in adipocytes and skeletal muscle of the rat.
    Rasmussen MJ; Clausen T
    Biochim Biophys Acta; 1982 Dec; 693(2):389-97. PubMed ID: 6297557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenylarsine oxide and hydrogen peroxide stimulate glucose transport via different pathways in isolated cardiac myocytes.
    Fischer Y; Rose H; Thomas J; Deuticke B; Kammermeier H
    Biochim Biophys Acta; 1993 Nov; 1153(1):97-104. PubMed ID: 8241256
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interactions of insulin, catecholamines and adenosine in the regulation of glucose transport in isolated rat cardiac myocytes.
    Shanahan MF; Edwards BM; Ruoho AE
    Biochim Biophys Acta; 1986 Jun; 887(1):121-9. PubMed ID: 3518811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytosolic free calcium concentration and glucose transport in isolated cardiac myocytes.
    Cheung JY; Constantine JM; Bonventre JV
    Am J Physiol; 1987 Feb; 252(2 Pt 1):C163-72. PubMed ID: 3103463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3-O-methyl-D-glucose uptake in isolated bovine adrenal chromaffin cells.
    Bigornia L; Bihler I
    Biochim Biophys Acta; 1986 Mar; 885(3):335-44. PubMed ID: 3511975
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of alkaline pH on the stimulation of glucose transport in rat skeletal muscle.
    Ren JM; Youn JH; Gulve EA; Henriksen EJ; Holloszy JO
    Biochim Biophys Acta; 1993 Feb; 1145(2):199-204. PubMed ID: 8431452
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of sodium and calcium on basal secretory activity of rat neurohypophysial peptidergic nerve terminals.
    Toescu EC; Nordmann JJ
    J Physiol; 1991 Feb; 433():127-44. PubMed ID: 1841936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of cell isolation and incubation procedures on Ca2+ dependence of glucose transport in isolated cardiac myocytes.
    Bihler I; Prayag R; Sawh PC
    Can J Cardiol; 1987; 3(1):23-32. PubMed ID: 3030519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of intracellular calcium on the sodium pump of human red cells.
    Brown AM; Lew VL
    J Physiol; 1983 Oct; 343():455-93. PubMed ID: 6315922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction.
    Youn JH; Gulve EA; Holloszy JO
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C555-61. PubMed ID: 2003578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insulin and exercise stimulate muscle alpha-aminoisobutyric acid transport by a Na+-K+-ATPase independent pathway.
    Zorzano A; Balon TW; Goodman MN; Ruderman NB
    Biochem Biophys Res Commun; 1986 Feb; 134(3):1342-9. PubMed ID: 2418838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sodium- and calcium-dependent steps in the mechanism of neonatal rat cardiac myocyte killing by ionophores. I. The sodium-carrying ionophore, monensin.
    Shier WT; DuBourdieu DJ
    Toxicol Appl Pharmacol; 1992 Sep; 116(1):38-46. PubMed ID: 1529451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stimulation of Na+ pump in cardiac myocytes and intact ventricles by low doses of digitaloids is independent of beta-adrenergic stimulation.
    Bihler I; Prayag RA; Charles P; Sawh PC
    Can J Cardiol; 1986; 2(4):230-5. PubMed ID: 2429747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of sodium, calcium and metabolic inhibitors on calcium efflux from goldfish heart ventricles.
    Busselen P; van Kerkhove E
    J Physiol; 1978 Sep; 282():263-83. PubMed ID: 722529
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolated cardiac myocytes. A new cellular model for studying insulin modulation of monosaccharide transport.
    Lindgren CA; Paulson DJ; Shanahan MF
    Biochim Biophys Acta; 1982 Dec; 721(4):385-93. PubMed ID: 6760900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ca2+ dependence of transverse tubule-mediated calcium release in skinned skeletal muscle fibers.
    Volpe P; Stephenson EW
    J Gen Physiol; 1986 Feb; 87(2):271-88. PubMed ID: 2419484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.