These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 2411296)

  • 61. Mechanism of passive Ca2+ permeability of vesicular sarcolemmal preparations from rat hearts.
    Kupriyanov VV; Preobrazhensky AN; Saks VA
    Biochim Biophys Acta; 1983 Feb; 728(2):239-53. PubMed ID: 6299343
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evidence that a Na+/Ca2+ antiport system regulates murine erythroleukemia cell differentiation.
    Smith RL; Macara IG; Levenson R; Housman D; Cantley L
    J Biol Chem; 1982 Jan; 257(2):773-80. PubMed ID: 7054181
    [TBL] [Abstract][Full Text] [Related]  

  • 63. G-protein-mediated regulation of the insulin-responsive glucose transporter in isolated cardiac myocytes.
    Eckel J; Gerlach-Eskuchen E; Reinauer H
    Biochem J; 1990 Dec; 272(3):691-6. PubMed ID: 2176473
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effects of monensin on metabolism of isolated rat islets of Langerhans.
    Smith JE; Howell SL
    Biochem J; 1984 Oct; 223(2):423-32. PubMed ID: 6388569
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Plasma free fatty acids decrease insulin-stimulated skeletal muscle glucose uptake by suppressing glycolysis in conscious rats.
    Kim JK; Wi JK; Youn JH
    Diabetes; 1996 Apr; 45(4):446-53. PubMed ID: 8603766
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mechanism of insulin resistance in the post receptor events in sheep: 3-O-methylglucose transport in ovine adipocytes.
    Sasaki S
    Horm Metab Res; 1990 Sep; 22(9):457-61. PubMed ID: 2258133
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Direct stimulation of myocardial glucose transport and glucose transporter-1 (GLUT1) and GLUT4 protein expression by the sulfonylurea glimepiride.
    Bähr M; von Holtey M; Müller G; Eckel J
    Endocrinology; 1995 Jun; 136(6):2547-53. PubMed ID: 7750476
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Suitability of 2-deoxyglucose for measuring initial rates of glucose uptake in isolated adipocytes.
    Traxinger RR; Marshall S
    Biochem Int; 1990 Nov; 22(4):607-15. PubMed ID: 2078189
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Polyamines mediate androgenic stimulation of calcium fluxes and membrane transport in rat heart myocytes.
    Koenig H; Fan CC; Goldstone AD; Lu CY; Trout JJ
    Circ Res; 1989 Mar; 64(3):415-26. PubMed ID: 2537154
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dual effect of adrenalin on sugar transport in rat diaphragm muscle.
    Bihler I; Sawh PC; Sloan IG
    Biochim Biophys Acta; 1978 Jul; 510(2):349-60. PubMed ID: 667050
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Insulin regulation of sugar transport in giant muscle fibres of the barnacle.
    Baker PF; Carruthers A
    J Physiol; 1983 Mar; 336():397-431. PubMed ID: 6308227
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Inhibition of multiple trans-sarcolemmal cation flux pathways by dichlorobenzamil in cultured chick heart cells.
    Kim D; Smith TW
    Mol Pharmacol; 1986 Aug; 30(2):164-70. PubMed ID: 2426569
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Characterization of the Na+/Ca2+ exchanger on rat mast cells. Evidence for a functional role on the regulation of the cellular response.
    Alfonso A; Lago J; Botana MA; Vieytes MR; Botana LM
    Cell Physiol Biochem; 1999; 9(2):53-71. PubMed ID: 10393999
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Potassium and anion transport and activity of the Na+-pump in the erythrocyte membrane: 3 different mechanisms of regulation by intracellular calcium].
    Orlov SN; Pokudin NI; Kotelevtsev IuV
    Biokhimiia; 1987 Aug; 52(8):1373-86. PubMed ID: 2444274
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Sodium-calcium exchange in cultured bovine pulmonary artery endothelial cells.
    Sage SO; van Breemen C; Cannell MB
    J Physiol; 1991; 440():569-80. PubMed ID: 1804978
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The receptor-regulated calcium influx in mouse submandibular acinar cells is sodium dependent: a patch-clamp study.
    Gallacher DV; Morris AP
    J Physiol; 1987 Mar; 384():119-30. PubMed ID: 2443656
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Sodium-calcium ion exchange in cardiac membrane vesicles.
    Reeves JP; Sutko JL
    Proc Natl Acad Sci U S A; 1979 Feb; 76(2):590-4. PubMed ID: 284383
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sodium cyanide increases cytosolic free calcium: evidence for activation of the reversed mode of the Na+/Ca2+ exchanger and Ca2+ mobilization from inositol trisphosphate-insensitive pools.
    Kiang JG; Smallridge RC
    Toxicol Appl Pharmacol; 1994 Aug; 127(2):173-81. PubMed ID: 7519371
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Increase vs. decrease of calcium uptake by isolated heart cells induced by H2O2 vs. HOCl.
    Kaminishi T; Matsuoka T; Yanagishita T; Kako KJ
    Am J Physiol; 1989 Mar; 256(3 Pt 1):C598-607. PubMed ID: 2538066
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of heavy metals and lanthanum on sugar transport in isolated guinea pig left atria.
    Bihler I; Hoeschen LE; Sawh PC
    Can J Physiol Pharmacol; 1980 Oct; 58(10):1184-8. PubMed ID: 7470991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.