BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 2411303)

  • 1. Intestinal transmission of macromolecules (BSA and FITC-dextran) in the neonatal pig: enhancing effect of colostrum, proteins and proteinase inhibitors.
    Weström BR; Ohlsson BG; Svendsen J; Tagesson C; Karlsson BW
    Biol Neonate; 1985; 47(6):359-66. PubMed ID: 2411303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intestinal transmission of macromolecules (BSA and FITC-labelled dextrans) in the neonatal pig. Influence of age of piglet and molecular weight of markers.
    Weström BR; Svendsen J; Ohlsson BG; Tagesson C; Karlsson BW
    Biol Neonate; 1984; 46(1):20-6. PubMed ID: 6204696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intestinal macromolecular transmission in the young rat: influence of protease inhibitors during development.
    Telemo E; Weström BR; Ekström G; Karlsson BW
    Biol Neonate; 1987; 52(3):141-8. PubMed ID: 2443191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intestinal macromolecular transmission in underprivileged and unaffected newborn pigs: implication for survival of underprivileged pigs.
    Svendsen LS; Weström BR; Svendsen J; Olsson AC; Karlsson BW
    Res Vet Sci; 1990 Mar; 48(2):184-9. PubMed ID: 1692152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The uptake of fluorescein-conjugated dextran 70,000 by the small intestinal epithelium of the young rat and pig in relation to macromolecular transmission into the blood.
    Ekström GM; Weström BR; Telemo E; Karlsson BW
    J Dev Physiol; 1988 Jun; 10(3):227-33. PubMed ID: 2464019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulin involvement in intestinal macromolecular transmission and closure in neonatal pigs.
    Svendsen LS; Weström BR; Svendsen J; Ohlsson BG; Ekman R; Karlsson BW
    J Pediatr Gastroenterol Nutr; 1986; 5(2):299-304. PubMed ID: 3083082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal transmission of macromolecules in newborn dairy calves of different ages at first feeding.
    Michanek P; Ventorp M; Weström B
    Res Vet Sci; 1989 May; 46(3):375-9. PubMed ID: 2472659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intestinal uptake and transmission of macromolecules into the blood in the young guinea pig.
    Ekström GM; Weström BR
    J Pediatr Gastroenterol Nutr; 1992 Jan; 14(1):71-8. PubMed ID: 1374124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intestinal macromolecule absorption in the fetal pig after infusion of colostrum in utero.
    Sangild PT; Trahair JF; Loftager MK; Fowden AL
    Pediatr Res; 1999 Apr; 45(4 Pt 1):595-602. PubMed ID: 10203154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of intestinal immunoglobulin absorption and enzyme activities in neonatal pigs is diet dependent.
    Jensen AR; Elnif J; Burrin DG; Sangild PT
    J Nutr; 2001 Dec; 131(12):3259-65. PubMed ID: 11739877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of phospholipase A2 and lysophosphatidylcholine metabolising enzyme activities in the neonatal rat intestine.
    Tagesson C; Telemo E; Ekström G; Weström B
    Gut; 1987 Jul; 28(7):822-8. PubMed ID: 2443432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cathepsin B and D activities in intestinal mucosa during postnatal development in pigs. Relation to intestinal uptake and transmission of macromolecules.
    Ekström GM; Weström BR
    Biol Neonate; 1991; 59(5):314-21. PubMed ID: 1714775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of colostrum feeding on intestinal development in newborn pigs.
    Wang T; Xu RJ
    Biol Neonate; 1996; 70(6):339-48. PubMed ID: 9001695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of the gastrointestinal mucosal barrier. IV. The effect of inhibition of proteolysis on the uptake of macromolecules by the intestine of the newborn rabbit before and after weaning.
    Udall JN; Bloch KJ; Vachino G; Feldman P; Walker WA
    Biol Neonate; 1984; 45(6):289-95. PubMed ID: 6203561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake of advanced glycation end products by proximal tubule epithelial cells via macropinocytosis.
    Gallicchio MA; Bach LA
    Biochim Biophys Acta; 2013 Dec; 1833(12):2922-2932. PubMed ID: 23747564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intestinal absorption of proteins by the neonatal piglet fed on sow's colostrum with either natural or experimentally eliminated trypsin-inhibiting activity.
    Carlsson LC; Weström BR; Karlsson BW
    Biol Neonate; 1980; 38(5-6):309-20. PubMed ID: 7417609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term protein exposure reduces albumin binding and uptake in proximal tubule-derived opossum kidney cells.
    Gekle M; Mildenberger S; Freudinger R; Silbernagl S
    J Am Soc Nephrol; 1998 Jun; 9(6):960-8. PubMed ID: 9621278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of ligand binding, E-BSA-FITC.
    Ashcroft RG
    Cytometry; 1986 May; 7(3):298-9. PubMed ID: 3709312
    [No Abstract]   [Full Text] [Related]  

  • 19. Immune response to different doses of a hapten of fluorescein isothiocyanate analyzed by two-dimensional affinity electrophoresis.
    Wang P; Nakamura K; Mimura Y; Takeo K; Tanaka T; Fujimoto M
    Electrophoresis; 1996 Jul; 17(7):1273-9. PubMed ID: 8855416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow cytometric analysis of fluorescein-conjugated estradiol (E-BSA-FITC) binding in breast cancer suspensions.
    Benz C; Wiznitzer I; Lee SH
    Cytometry; 1985 May; 6(3):260-7. PubMed ID: 3996141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.