These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. A theoretical study of the interaction of hydrogen and oxygen with palladium or gold adsorbed on pyridine-like nitrogen-doped graphene. Rangel E; Magana LF; Sansores LE Chemphyschem; 2014 Dec; 15(18):4042-8. PubMed ID: 25257619 [TBL] [Abstract][Full Text] [Related]
26. Phase behavior of mixed submonolayer films of krypton and xenon on graphite. Patrykiejew A; Sokołowski S J Chem Phys; 2012 Apr; 136(14):144702. PubMed ID: 22502538 [TBL] [Abstract][Full Text] [Related]
27. Electronic structure, cohesive and magnetic properties of iridium oxide clusters adsorbed on graphene. Ilgaz Aysan I; Gorkan T; Ozdemir I; Kadioglu Y; Gökoğlu G; Aktürk E J Mol Graph Model; 2020 Dec; 101():107726. PubMed ID: 32920238 [TBL] [Abstract][Full Text] [Related]
28. Ab initio simulation of helium-ion microscopy images: the case of suspended graphene. Zhang H; Miyamoto Y; Rubio A Phys Rev Lett; 2012 Dec; 109(26):265505. PubMed ID: 23368582 [TBL] [Abstract][Full Text] [Related]
29. Graphene-nickel interfaces: a review. Dahal A; Batzill M Nanoscale; 2014 Mar; 6(5):2548-62. PubMed ID: 24477601 [TBL] [Abstract][Full Text] [Related]
30. Passivation of metal surface states: microscopic origin for uniform monolayer graphene by low temperature chemical vapor deposition. Jeon I; Yang H; Lee SH; Heo J; Seo DH; Shin J; Chung UI; Kim ZG; Chung HJ; Seo S ACS Nano; 2011 Mar; 5(3):1915-20. PubMed ID: 21309604 [TBL] [Abstract][Full Text] [Related]
32. The nature of bonding and electronic properties of graphene and benzene with iridium adatoms. Lazar P; Granatier J; Klimeš J; Hobza P; Otyepka M Phys Chem Chem Phys; 2014 Oct; 16(38):20818-27. PubMed ID: 25166887 [TBL] [Abstract][Full Text] [Related]
33. Nuclear magnetic resonance predictions for graphenes: concentric finite models and extrapolation to large systems. Vähäkangas J; Ikäläinen S; Lantto P; Vaara J Phys Chem Chem Phys; 2013 Apr; 15(13):4634-41. PubMed ID: 23422931 [TBL] [Abstract][Full Text] [Related]
34. Vacancy clusters in graphane as quantum dots. Singh AK; Penev ES; Yakobson BI ACS Nano; 2010 Jun; 4(6):3510-4. PubMed ID: 20465240 [TBL] [Abstract][Full Text] [Related]
35. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review. Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491 [TBL] [Abstract][Full Text] [Related]
36. Switchable polarization in an unzipped graphene oxide monolayer. Noor-A-Alam M; Shin YH Phys Chem Chem Phys; 2016 Aug; 18(30):20443-9. PubMed ID: 27401944 [TBL] [Abstract][Full Text] [Related]
37. Inducing electronic changes in graphene through silicon (100) substrate modification. Xu Y; He KT; Schmucker SW; Guo Z; Koepke JC; Wood JD; Lyding JW; Aluru NR Nano Lett; 2011 Jul; 11(7):2735-42. PubMed ID: 21661740 [TBL] [Abstract][Full Text] [Related]
38. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Zhang Y; Tan YW; Stormer HL; Kim P Nature; 2005 Nov; 438(7065):201-4. PubMed ID: 16281031 [TBL] [Abstract][Full Text] [Related]
39. Electronic structure and quantum transport properties of trilayers formed from graphene and boron nitride. Zhong X; Amorim RG; Scheicher RH; Pandey R; Karna SP Nanoscale; 2012 Sep; 4(17):5490-8. PubMed ID: 22854975 [TBL] [Abstract][Full Text] [Related]
40. Highly hydrogenated graphene via active hydrogen reduction of graphene oxide in the aqueous phase at room temperature. Sofer Z; Jankovský O; Šimek P; Soferová L; Sedmidubský D; Pumera M Nanoscale; 2014 Feb; 6(4):2153-60. PubMed ID: 24366534 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]