These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24113298)

  • 1. Cement lines and interlamellar areas in compact bone as strain amplifiers - contributors to elasticity, fracture toughness and mechanotransduction.
    Nobakhti S; Limbert G; Thurner PJ
    J Mech Behav Biomed Mater; 2014 Jan; 29():235-51. PubMed ID: 24113298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of microstructure and microcrack growth in cortical bone: a finite element study.
    Mischinski S; Ural A
    Comput Methods Biomech Biomed Engin; 2013; 16(1):81-94. PubMed ID: 21970670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromechanical modelling of cortical bone.
    Mullins LP; McGarry JP; Bruzzi MS; McHugh PE
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):159-69. PubMed ID: 17558645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Load-bearing in cortical bone microstructure: Selective stiffening and heterogeneous strain distribution at the lamellar level.
    Katsamenis OL; Chong HM; Andriotis OG; Thurner PJ
    J Mech Behav Biomed Mater; 2013 Jan; 17():152-65. PubMed ID: 23131790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling.
    Demirtas A; Curran E; Ural A
    Bone; 2016 Oct; 91():92-101. PubMed ID: 27451083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method.
    Dong XN; Guo XE
    J Biomech Eng; 2006 Jun; 128(3):309-16. PubMed ID: 16706580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level.
    Katsamenis OL; Jenkins T; Thurner PJ
    Bone; 2015 Jul; 76():158-68. PubMed ID: 25863123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteonal effects on elastic modulus and fatigue life in equine bone.
    Gibson VA; Stover SM; Gibeling JC; Hazelwood SJ; Martin RB
    J Biomech; 2006; 39(2):217-25. PubMed ID: 16321623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilevel finite element modeling for the prediction of local cellular deformation in bone.
    Deligianni DD; Apostolopoulos CA
    Biomech Model Mechanobiol; 2008 Apr; 7(2):151-9. PubMed ID: 17431696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element modeling for strain rate dependency of fracture resistance in compact bone.
    Charoenphan S; Polchai A
    J Biomech Eng; 2007 Feb; 129(1):20-5. PubMed ID: 17227094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of bone microstructure on the initiation and growth of microcracks.
    O'Brien FJ; Taylor D; Clive Lee T
    J Orthop Res; 2005 Mar; 23(2):475-80. PubMed ID: 15734265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method.
    Tomar V
    J Biomech Eng; 2008 Apr; 130(2):021021. PubMed ID: 18412508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An interface damage model that captures crack propagation at the microscale in cortical bone using XFEM.
    Gustafsson A; Khayyeri H; Wallin M; Isaksson H
    J Mech Behav Biomed Mater; 2019 Feb; 90():556-565. PubMed ID: 30472565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crack propagation in cortical bone is affected by the characteristics of the cement line: a parameter study using an XFEM interface damage model.
    Gustafsson A; Wallin M; Khayyeri H; Isaksson H
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1247-1261. PubMed ID: 30963356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micromechanics of osteonal cortical bone fracture.
    Guo XE; Liang LC; Goldstein SA
    J Biomech Eng; 1998 Feb; 120(1):112-7. PubMed ID: 9675689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fracture toughness of human bone under tension.
    Norman TL; Vashishth D; Burr DB
    J Biomech; 1995 Mar; 28(3):309-20. PubMed ID: 7730389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromechanics fracture in osteonal cortical bone: a study of the interactions between microcrack propagation, microstructure and the material properties.
    Najafi AR; Arshi AR; Eslami MR; Fariborz S; Moeinzadeh MH
    J Biomech; 2007; 40(12):2788-95. PubMed ID: 17376454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometric determinants to cement line debonding and osteonal lamellae failure in osteon pushout tests.
    Dong XN; Guo XE
    J Biomech Eng; 2004 Jun; 126(3):387-90. PubMed ID: 15341177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.