These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24113535)

  • 41. A comparison of SWAT, HSPF and SHETRAN/GOPC for modelling phosphorus export from three catchments in Ireland.
    Nasr A; Bruen M; Jordan P; Moles R; Kiely G; Byrne P
    Water Res; 2007 Mar; 41(5):1065-73. PubMed ID: 17258266
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Use of drinking water treatment residuals as a potential best management practice to reduce phosphorus risk index scores.
    Dayton EA; Basta NT
    J Environ Qual; 2005; 34(6):2112-7. PubMed ID: 16275711
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Testing the Wisconsin Phosphorus Index with year-round, field-scale runoff monitoring.
    Good LW; Vadas P; Panuska JC; Bonilla CA; Jokela WE
    J Environ Qual; 2012; 41(6):1730-40. PubMed ID: 23128730
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Runoff and nutrient losses during winter periods in cold climates--requirements to nutrient simulation models.
    Deelstra J; Kvaernø SH; Granlund K; Sileika AS; Gaigalis K; Kyllmar K; Vagstad N
    J Environ Monit; 2009 Mar; 11(3):602-9. PubMed ID: 19280038
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Critical evaluation of the implementation of mitigation options for phosphorus from field to catchment scales.
    Maguire RO; Rubaek GH; Haggard BE; Foy BH
    J Environ Qual; 2009; 38(5):1989-97. PubMed ID: 19704142
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single-objective vs. multi-objective autocalibration in modelling total suspended solids and phosphorus in a small agricultural watershed with SWAT.
    Rasolomanana SD; Lessard P; Vanrolleghem PA
    Water Sci Technol; 2012; 65(4):643-52. PubMed ID: 22277222
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamic phosphorus mass balance modeling of large watersheds: long-term implications of management strategies.
    Cassell EA; Kort RL; Meals DW; Aschmann SG; Dorioz JM; Anderson DP
    Water Sci Technol; 2001; 43(5):153-62. PubMed ID: 11379127
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphorus run-off assessment in a watershed.
    Chebud Y; Naja GM; Rivero R
    J Environ Monit; 2011 Jan; 13(1):66-73. PubMed ID: 21069224
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The impact of agricultural Best Management Practices on water quality in a North German lowland catchment.
    Lam QD; Schmalz B; Fohrer N
    Environ Monit Assess; 2011 Dec; 183(1-4):351-79. PubMed ID: 21394434
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nutrient loss and water quality under extensive grazing in the upper Burdekin river catchment, North Queensland.
    O'Reagain PJ; Brodie J; Fraser G; Bushell JJ; Holloway CH; Faithful JW; Haynes D
    Mar Pollut Bull; 2005; 51(1-4):37-50. PubMed ID: 15757706
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area.
    Wu L; Long TY; Li CM
    Water Sci Technol; 2010; 61(6):1601-16. PubMed ID: 20351440
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sustainability of farmers' soil fertility management practices: a case study in the North China Plain.
    Zhen L; Zoebisch MA; Chen G; Feng Z
    J Environ Manage; 2006 Jun; 79(4):409-19. PubMed ID: 16337082
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simulating the impacts of future land use and climate changes on surface water quality in the Des Plaines River watershed, Chicago Metropolitan Statistical Area, Illinois.
    Wilson CO; Weng Q
    Sci Total Environ; 2011 Sep; 409(20):4387-405. PubMed ID: 21835439
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Integrated tool for risk assessment in agricultural management of soil erosion and losses of phosphorus and nitrogen.
    Bechmann M; Stålnacke P; Kvaernø S; Eggestad HO; Oygarden L
    Sci Total Environ; 2009 Jan; 407(2):749-59. PubMed ID: 18940272
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT.
    Luo Y; Zhang M
    Environ Pollut; 2009 Dec; 157(12):3370-8. PubMed ID: 19616876
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Linking dissolved and particulate phosphorus export in rivers draining California's Central Valley with anthropogenic sources at the regional scale.
    Sobota DJ; Harrison JA; Dahlgren RA
    J Environ Qual; 2011; 40(4):1290-302. PubMed ID: 21712599
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicted impact and evaluation of North Carolina's phosphorus indexing tool.
    Johnson AM; Osmond DL; Hodges SC
    J Environ Qual; 2005; 34(5):1801-10. PubMed ID: 16151232
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative study of model prediction of diffuse nutrient losses in response to changes in agricultural practices.
    Vagstad N; French HK; Andersen HE; Behrendt H; Grizzetti B; Groenendijk P; Lo Porto A; Reisser H; Siderius C; Stromquist J; Hejzlar J; Deelstra J
    J Environ Monit; 2009 Mar; 11(3):594-601. PubMed ID: 19280037
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimating Legacy Soil Phosphorus Impacts on Phosphorus Loss in the Chesapeake Bay Watershed.
    Vadas PA; Fiorellino NM; Coale FJ; Kratochvil R; Mulkey AS; McGrath JM
    J Environ Qual; 2018 May; 47(3):480-486. PubMed ID: 29864190
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phosphorus index as a phosphorus awareness tool: documented phosphorus use reduction in New York state.
    Ketterings QM; Czymmek KJ
    J Environ Qual; 2012; 41(6):1767-73. PubMed ID: 23128734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.