These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 24113547)

  • 1. Production of acetol from glycerol using engineered Escherichia coli.
    Zhu H; Yi X; Liu Y; Hu H; Wood TK; Zhang X
    Bioresour Technol; 2013 Dec; 149():238-43. PubMed ID: 24113547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Escherichia coli to enhance acetol production from glycerol.
    Yao R; Liu Q; Hu H; Wood TK; Zhang X
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):7945-52. PubMed ID: 26078109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of methylglyoxal to acetol by Escherichia coli aldo-keto reductases.
    Ko J; Kim I; Yoo S; Min B; Kim K; Park C
    J Bacteriol; 2005 Aug; 187(16):5782-9. PubMed ID: 16077126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of glycerol-utilizing Escherichia coli strain for the production of bioethanol.
    Thapa LP; Lee SJ; Yoo HY; Choi HS; Park C; Kim SW
    Enzyme Microb Technol; 2013 Aug; 53(3):206-15. PubMed ID: 23830464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol.
    Clomburg JM; Gonzalez R
    Biotechnol Bioeng; 2011 Apr; 108(4):867-79. PubMed ID: 21404260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient anaerobic production of succinate from glycerol in engineered Escherichia coli by using dual carbon sources and limiting oxygen supply in preceding aerobic culture.
    Li Q; Huang B; Wu H; Li Z; Ye Q
    Bioresour Technol; 2017 May; 231():75-84. PubMed ID: 28196782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli.
    Kim K; Kim SK; Park YC; Seo JH
    Bioresour Technol; 2014 Mar; 156():170-5. PubMed ID: 24502915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli.
    Lee S; Kim B; Park K; Um Y; Lee J
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1801-13. PubMed ID: 22434350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Improving β-carotene production in Escherichia coli by metabolic engineering of glycerol utilization pathway].
    Dong Y; Hu K; Li X; Li Q; Zhang X
    Sheng Wu Gong Cheng Xue Bao; 2017 Feb; 33(2):247-260. PubMed ID: 28956381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial recycling of glycerol to biodiesel.
    Yang L; Zhu Z; Wang W; Lu X
    Bioresour Technol; 2013 Dec; 150():1-8. PubMed ID: 24140944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving 1,3-propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of sn-glycerol-3-phosphate.
    Zhu MM; Lawman PD; Cameron DC
    Biotechnol Prog; 2002; 18(4):694-9. PubMed ID: 12153300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic function of the mycobacterial binuclear iron monooxygenase in acetone metabolism.
    Furuya T; Nakao T; Kino K
    FEMS Microbiol Lett; 2015 Oct; 362(19):. PubMed ID: 26293913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylglyoxal bypass identified as source of chiral contamination in l(+) and d(-)-lactate fermentations by recombinant Escherichia coli.
    Grabar TB; Zhou S; Shanmugam KT; Yomano LP; Ingram LO
    Biotechnol Lett; 2006 Oct; 28(19):1527-35. PubMed ID: 16868860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol.
    Tran KT; Maeda T; Wood TK
    Appl Microbiol Biotechnol; 2014 May; 98(10):4757-70. PubMed ID: 24615384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico deletion of PtsG gene in Escherichia coli genome-scale model predicts increased succinate production from glycerol.
    Mienda BS; Shamsir MS
    J Biomol Struct Dyn; 2015; 33(11):2380-9. PubMed ID: 25921851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli.
    Mazumdar S; Blankschien MD; Clomburg JM; Gonzalez R
    Microb Cell Fact; 2013 Jan; 12():7. PubMed ID: 23347598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications.
    Vander Jagt DL; Robinson B; Taylor KK; Hunsaker LA
    J Biol Chem; 1992 Mar; 267(7):4364-9. PubMed ID: 1537826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Escherichia coli for fumaric acid production from glycerol.
    Li N; Zhang B; Wang Z; Tang YJ; Chen T; Zhao X
    Bioresour Technol; 2014 Dec; 174():81-7. PubMed ID: 25463785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic Engineering of Escherichia coli for d-Lactate Production from Crude Glycerol.
    Wang ZW; Saini M; Lin LJ; Chiang CJ; Chao YP
    J Agric Food Chem; 2015 Nov; 63(43):9583-9. PubMed ID: 26477354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of methylglyoxal in anaerobically grown Escherichia coli and its detoxification by expression of the Pseudomonas putida glyoxalase I gene.
    Zhu MM; Skraly FA; Cameron DC
    Metab Eng; 2001 Jul; 3(3):218-25. PubMed ID: 11461144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.