These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24113680)

  • 21. Depth camera-based 3D hand gesture controls with immersive tactile feedback for natural mid-air gesture interactions.
    Kim K; Kim J; Choi J; Kim J; Lee S
    Sensors (Basel); 2015 Jan; 15(1):1022-46. PubMed ID: 25580901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FW-Touch: A Finger Wearable Haptic Interface With an MR Foam Actuator for Displaying Surface Material Properties on a Touch Screen.
    Chen D; Song A; Tian L; Fu L; Zeng H
    IEEE Trans Haptics; 2019; 12(3):281-294. PubMed ID: 31180900
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Methods of resolution for haptic assistance during catheterization].
    Kern TA; Herrmann J; Klages S; Meiss T; Werthschützky R
    Biomed Tech (Berl); 2005; 50(1-2):8-13. PubMed ID: 15792195
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved haptic interface for colonoscopy simulation.
    Woo HS; Kim WS; Ahn W; Lee DY; Yi SY
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1253-6. PubMed ID: 18002190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feasibility of novel four degrees of freedom capacitive force sensor for skin interface force.
    Murakami C; Ishikuro Y; Takahashi M
    Biomed Eng Online; 2012 Nov; 11():90. PubMed ID: 23186069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel flexible capacitive touch pad based on graphene oxide film.
    Tian H; Yang Y; Xie D; Ren TL; Shu Y; Zhou CJ; Sun H; Liu X; Zhang CH
    Nanoscale; 2013 Feb; 5(3):890-4. PubMed ID: 23247540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of haptic degrees of freedom on task performance in virtual surgical environments.
    Forsslund J; Chan S; Selesnick J; Salisbury K; Silva RG; Blevins NH
    Stud Health Technol Inform; 2013; 184():129-35. PubMed ID: 23400144
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Haptic Augmentation for Teleoperation through Virtual Grasping Points.
    Panzirsch M; Balachandran R; Weber B; Ferre M; Artigas J
    IEEE Trans Haptics; 2018; 11(3):400-416. PubMed ID: 29994289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Grip-Force, Contact, and Acceleration Feedback on a Teleoperated Pick-and-Place Task.
    Khurshid RP; Fitter NT; Fedalei EA; Kuchenbecker KJ
    IEEE Trans Haptics; 2017; 10(1):40-53. PubMed ID: 27249838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An MRI-Guided Telesurgery System Using a Fabry-Perot Interferometry Force Sensor and a Pneumatic Haptic Device.
    Su H; Shang W; Li G; Patel N; Fischer GS
    Ann Biomed Eng; 2017 Aug; 45(8):1917-1928. PubMed ID: 28447178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Encountered-Type Haptic Interface for Representation of Shape and Rigidity of 3D Virtual Objects.
    Takizawa N; Yano H; Iwata H; Oshiro Y; Ohkohchi N
    IEEE Trans Haptics; 2017; 10(4):500-510. PubMed ID: 28829316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multimodal Evaluation of the Differences between Real and Virtual Assemblies.
    Sagardia M; Hulin T
    IEEE Trans Haptics; 2018; 11(1):107-118. PubMed ID: 28829317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An instrumented glove for grasp specification in virtual-reality-based point-and-direct telerobotics.
    Yun MH; Cannon D; Freivalds A; Thomas G
    IEEE Trans Syst Man Cybern B Cybern; 1997 Oct; 27(5):835-46. PubMed ID: 11542952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Multi-User Surface Visuo-Haptic Display Using Electrostatic Friction Modulation and Capacitive-Type Position Sensing.
    Nakamura T; Yamamoto A
    IEEE Trans Haptics; 2016; 9(3):311-22. PubMed ID: 27116751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toward realistic haptic rendering of surface textures.
    Choi S; Tan HZ
    IEEE Comput Graph Appl; 2004; 24(2):40-7. PubMed ID: 15387227
    [No Abstract]   [Full Text] [Related]  

  • 36. A haptic knob for rehabilitation of hand function.
    Lambercy O; Dovat L; Gassert R; Burdet E; Teo CL; Milner T
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):356-66. PubMed ID: 17894268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contact Force Compensated Thermal Stimulators for Holistic Haptic Interfaces.
    Sim JK; Cho YH
    J Nanosci Nanotechnol; 2016 May; 16(5):4422-7. PubMed ID: 27483767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and implementation of haptic virtual environments for the training of the visually impaired.
    Tzovaras D; Nikolakis G; Fergadis G; Malasiotis S; Stavrakis M
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):266-78. PubMed ID: 15218940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tactile Feedback of Object Slip Facilitates Virtual Object Manipulation.
    Walker JM; Blank AA; Shewokis PA; OMalley MK
    IEEE Trans Haptics; 2015; 8(4):454-66. PubMed ID: 25861087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative Experimental Research on Haptic Display Methods of Virtual Surface Shape Based on Touch Screen.
    Chen D; Chen G; Zhu D; Hu X; Wei Z; Liu J; Song A
    IEEE Trans Haptics; 2022; 15(4):667-678. PubMed ID: 36121964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.