These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24113690)

  • 21. Capillary soft valves for microfluidics.
    Hitzbleck M; Avrain L; Smekens V; Lovchik RD; Mertens P; Delamarche E
    Lab Chip; 2012 May; 12(11):1972-8. PubMed ID: 22526982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plug-and-play, infrared, laser-mediated PCR in a microfluidic chip.
    Pak N; Saunders DC; Phaneuf CR; Forest CR
    Biomed Microdevices; 2012 Apr; 14(2):427-33. PubMed ID: 22218821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic integration of parallel solid-phase liquid chromatography.
    Huft J; Haynes CA; Hansen CL
    Anal Chem; 2013 Mar; 85(5):2999-3005. PubMed ID: 23384109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A PCR reactor with an integrated alumina membrane for nucleic acid isolation.
    Kim J; Mauk M; Chen D; Qiu X; Kim J; Gale B; Bau HH
    Analyst; 2010 Sep; 135(9):2408-14. PubMed ID: 20617276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From sample to PCR product in under 45 minutes: a polymeric integrated microdevice for clinical and forensic DNA analysis.
    Lounsbury JA; Karlsson A; Miranian DC; Cronk SM; Nelson DA; Li J; Haverstick DM; Kinnon P; Saul DJ; Landers JP
    Lab Chip; 2013 Apr; 13(7):1384-93. PubMed ID: 23389252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low density DNA microarray for detection of most frequent TP53 missense point mutations.
    Rangel-López A; Maldonado-Rodríguez R; Salcedo-Vargas M; Espinosa-Lara JM; Méndez-Tenorio A; Beattie KL
    BMC Biotechnol; 2005 Feb; 5():8. PubMed ID: 15713227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis.
    Schumacher S; Nestler J; Otto T; Wegener M; Ehrentreich-Förster E; Michel D; Wunderlich K; Palzer S; Sohn K; Weber A; Burgard M; Grzesiak A; Teichert A; Brandenburg A; Koger B; Albers J; Nebling E; Bier FF
    Lab Chip; 2012 Feb; 12(3):464-73. PubMed ID: 22038328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polymerase chain reaction/ligase detection reaction/hybridization assays using flow-through microfluidic devices for the detection of low-abundant DNA point mutations.
    Hashimoto M; Barany F; Soper SA
    Biosens Bioelectron; 2006 Apr; 21(10):1915-23. PubMed ID: 16488597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual-wavelength fluorescent detection of particles on a novel microfluidic chip.
    Jiang H; Weng X; Li D
    Lab Chip; 2013 Mar; 13(5):843-50. PubMed ID: 23291857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.
    Noor MO; Tavares AJ; Krull UJ
    Anal Chim Acta; 2013 Jul; 788():148-57. PubMed ID: 23845494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Infrared temperature control system for a completely noncontact polymerase chain reaction in microfluidic chips.
    Roper MG; Easley CJ; Legendre LA; Humphrey JA; Landers JP
    Anal Chem; 2007 Feb; 79(4):1294-300. PubMed ID: 17297927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solid phase DNA extraction on PDMS and direct amplification.
    Pasquardini L; Potrich C; Quaglio M; Lamberti A; Guastella S; Lunelli L; Cocuzza M; Vanzetti L; Pirri CF; Pederzolli C
    Lab Chip; 2011 Dec; 11(23):4029-35. PubMed ID: 21989780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid microRNA detection using power-free microfluidic chip: coaxial stacking effect enhances the sandwich hybridization.
    Arata H; Komatsu H; Han A; Hosokawa K; Maeda M
    Analyst; 2012 Jul; 137(14):3234-7. PubMed ID: 22614070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic DNA amplification--a review.
    Zhang Y; Ozdemir P
    Anal Chim Acta; 2009 Apr; 638(2):115-25. PubMed ID: 19327449
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analytical and numerical study of Joule heating effects on electrokinetically pumped continuous flow PCR chips.
    Gui L; Ren CL
    Langmuir; 2008 Mar; 24(6):2938-46. PubMed ID: 18257592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleic acid microarrays created in the double-spiral format on a circular microfluidic disk.
    Chen H; Wang L; Li PC
    Lab Chip; 2008 May; 8(5):826-9. PubMed ID: 18432357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast nucleic acid amplification for integration in point-of-care applications.
    Brunklaus S; Hansen-Hagge TE; Erwes J; Höth J; Jung M; Latta D; Strobach X; Winkler C; Ritzi-Lehnert M; Drese KS
    Electrophoresis; 2012 Nov; 33(21):3222-8. PubMed ID: 23065712
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visible and red emissive molecular beacons for optical temperature measurements and quality control in diagnostic assays utilizing temperature-dependent amplification reactions.
    Fidan Z; Wende A; Resch-Genger U
    Anal Bioanal Chem; 2017 Feb; 409(6):1519-1529. PubMed ID: 27900430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical microfluidic biosensor for the detection of nucleic acid sequences.
    Goral VN; Zaytseva NV; Baeumner AJ
    Lab Chip; 2006 Mar; 6(3):414-21. PubMed ID: 16511625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Capture of single-stranded DNA assisted by oligonucleotide modules.
    O'Meara D; Nilsson P; Nygren PA; Uhlén M; Lundeberg J
    Anal Biochem; 1998 Jan; 255(2):195-203. PubMed ID: 9451504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.