These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 24114322)
1. Superparamagnetic polymer emulsion particles from a soap-free seeded emulsion polymerization and their application for lipase immobilization. Cui Y; Chen X; Li Y; Liu X; Lei L; Zhang Y; Qian J Appl Biochem Biotechnol; 2014 Jan; 172(2):701-12. PubMed ID: 24114322 [TBL] [Abstract][Full Text] [Related]
2. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: characterization and application for enzymatic inhibition assays. Zhu YT; Ren XY; Liu YM; Wei Y; Qing LS; Liao X Mater Sci Eng C Mater Biol Appl; 2014 May; 38():278-85. PubMed ID: 24656379 [TBL] [Abstract][Full Text] [Related]
3. Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. Wang XY; Jiang XP; Li Y; Zeng S; Zhang YW Int J Biol Macromol; 2015 Apr; 75():44-50. PubMed ID: 25603148 [TBL] [Abstract][Full Text] [Related]
4. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization. Hou C; Qi Z; Zhu H Colloids Surf B Biointerfaces; 2015 Apr; 128():544-551. PubMed ID: 25784302 [TBL] [Abstract][Full Text] [Related]
5. Facile synthesis of amino-silane modified superparamagnetic Fe3O4 nanoparticles and application for lipase immobilization. Cui Y; Li Y; Yang Y; Liu X; Lei L; Zhou L; Pan F J Biotechnol; 2010 Oct; 150(1):171-4. PubMed ID: 20638425 [TBL] [Abstract][Full Text] [Related]
6. Novel magnetic microspheres of P (GMA-b-HEMA): preparation, lipase immobilization and enzymatic activity in two phases. Cui Y; Chen X; Li Y; Liu X; Lei L; Xuan S Appl Microbiol Biotechnol; 2012 Jul; 95(1):147-56. PubMed ID: 22159608 [TBL] [Abstract][Full Text] [Related]
7. Preparation of magnetic Fe3O4@SiO2 nanoparticles for immobilization of lipase. Liu W; Zhou F; Zhang XY; Li Y; Wang XY; Xu XM; Zhang YW J Nanosci Nanotechnol; 2014 Apr; 14(4):3068-72. PubMed ID: 24734736 [TBL] [Abstract][Full Text] [Related]
8. Poly(carboxybetaine methacrylate)-functionalized magnetic composite particles: A biofriendly support for lipase immobilization. Qi H; Du Y; Hu G; Zhang L Int J Biol Macromol; 2018 Feb; 107(Pt B):2660-2666. PubMed ID: 29080821 [TBL] [Abstract][Full Text] [Related]
9. Immobilization of Candida antarctica Lipase B on Magnetic Poly(Urea-Urethane) Nanoparticles. Chiaradia V; Soares NS; Valério A; de Oliveira D; Araújo PH; Sayer C Appl Biochem Biotechnol; 2016 Oct; 180(3):558-575. PubMed ID: 27184256 [TBL] [Abstract][Full Text] [Related]
11. Surface modification of magnetite nanoparticles using gluconic acid and their application in immobilized lipase. Sui Y; Cui Y; Nie Y; Xia GM; Sun GX; Han JT Colloids Surf B Biointerfaces; 2012 May; 93():24-8. PubMed ID: 22225941 [TBL] [Abstract][Full Text] [Related]
12. A robust nanobiocatalyst based on high performance lipase immobilized to novel synthesised poly(o-toluidine) functionalized magnetic nanocomposite: Sterling stability and application. Asmat S; Husain Q Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():25-36. PubMed ID: 30889698 [TBL] [Abstract][Full Text] [Related]
13. Biochemical characterization and stability assessment of Rhizopus oryzae lipase covalently immobilized on amino-functionalized magnetic nanoparticles. Pashangeh K; Akhond M; Karbalaei-Heidari HR; Absalan G Int J Biol Macromol; 2017 Dec; 105(Pt 1):300-307. PubMed ID: 28711611 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of fibrous and non-fibrous mesoporous silica magnetic yolk-shell microspheres as recyclable supports for immobilization of Candida rugosa lipase. Ali Z; Tian L; Zhang B; Ali N; Khan M; Zhang Q Enzyme Microb Technol; 2017 Aug; 103():42-52. PubMed ID: 28554384 [TBL] [Abstract][Full Text] [Related]
15. Immobilization studies of Candida Antarctica lipase B on gallic acid resin-grafted magnetic iron oxide nanoparticles. SreeHarsha N; Ghorpade RV; Alzahrani AM; Al-Dhubiab BE; Venugopala KN Int J Nanomedicine; 2019; 14():3235-3244. PubMed ID: 31118633 [No Abstract] [Full Text] [Related]
16. Immobilization of α-amylase onto poly(glycidyl methacrylate) grafted electrospun fibers by ATRP. Oktay B; Demir S; Kayaman-Apohan N Mater Sci Eng C Mater Biol Appl; 2015 May; 50():386-93. PubMed ID: 25746284 [TBL] [Abstract][Full Text] [Related]
17. Efficient Immobilization of Porcine Pancreatic α-Amylase on Amino-Functionalized Magnetite Nanoparticles: Characterization and Stability Evaluation of the Immobilized Enzyme. Akhond M; Pashangeh K; Karbalaei-Heidari HR; Absalan G Appl Biochem Biotechnol; 2016 Nov; 180(5):954-968. PubMed ID: 27240662 [TBL] [Abstract][Full Text] [Related]
18. Design and characterization of immobilized biocatalyst with lipase activity onto magnetic magnesium spinel nanoparticles: A novel platform for biocatalysis. Romero CM; Spuches FC; Morales AH; Perotti NI; Navarro MC; Gómez MI Colloids Surf B Biointerfaces; 2018 Dec; 172():699-707. PubMed ID: 30245295 [TBL] [Abstract][Full Text] [Related]
19. Polyethylenimine-immobilized core-shell nanoparticles: synthesis, characterization, and biocompatibility test. Ratanajanchai M; Soodvilai S; Pimpha N; Sunintaboon P Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():377-83. PubMed ID: 24268272 [TBL] [Abstract][Full Text] [Related]
20. Lipase-based on starch material as a development matrix with magnetite cross-linked enzyme aggregates and its application. Mehde AA; Mehdi WA; Severgün O; Çakar S; Özacar M Int J Biol Macromol; 2018 Dec; 120(Pt B):1533-1543. PubMed ID: 30261255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]